Optimal Algorithm for Online Multiple Knapsack

%

N

ba
S

__ :
Marcin Bienkowski Maciej Pacut Krzysztof Piecuch
(speaker)
I\ Uniwersytet wiversitat Jin\ Uniwersytet
%I@ Wroctawski wien %@T@ Wroctawski

Knapsack

Knapsack

Knapsack

Knapsack

Knapsack

Knapsack

Multiple Knapsack

Textbook Knapsack (offline)

il

Given

® one knapsack of capacity 1

e multiset of items (size and weight)

Choose a subset of items
® sum of sizes <1
® maximize total weight

Proportional Knapsack (offline)

—
I

Given
® one knapsack of capacity 1

e multiset of items (size and-weight)

Choose a subset of items
® sum of sizes <1
® maximize total weight size 1

Multiple Knapsack (offline)

Choose a subset of items
® assign accepted items to a knapsacks
® in each knapsack: total size of items <1
® maximize total size

Online

Online Multiple Knapsack

i

REJECT

Online Multiple Knapsack

i

REJECT

. ALGy i
maximize =z=2ne
O'DToffline

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

FirstFit is 0.5-competitive (Cygan et al. [TOCS 2016])

Known results

Bad news for One Online Knaspack

C e]

item 1 item 2 ALGontine OPToy prine

Known results

Bad news for One Online Knaspack

e

item 1 item 2 ALGontine OPToy prine

Known results

Bad news for One Online Knaspack

~ -

N
— e

item 1 item 2 ALGontine OPToy prine

Known results

Bad news for One Online Knaspack

e e

item 1 item 2 ALGontine OPToy prine

Known results

Algorithm FirstFit

I I
0.5 In"*(2¢) =~ 0.59

Adversary Randomized bound by Cygan et al.

(max objective: higher is better)

Our contributions

Algorithm FirstFit Rising Threshold Algorithm
I +
0.5 In"*(2¢) =~ 0.59
|
Adversary Randomized bound by Cygan et al.

(max objective: higher is better)

Rising Threshold Algorithm

We say that items (1/2, 1] are large

1

1/24 f B e e [

(max 1 large per knapsack)

Rising Threshold Algorithm

Step 1. Algorithm for large items

L
L L

A i i iy

Rising Threshold Algorithm
(for large items)

Rising Threshold Algorithm
(for large items)

assign each knapsack a threshold (tbd)

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm

(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm

(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
(for large items)

o fill from the left

® reject if under threshold

Rising Threshold Algorithm
Threshold function

f(x) = max{1/2, (2e)"1}

n knapsacks

Rising Threshold Algorithm
Threshold function

f(x) = max{1/2, (2e)"1}

interval [0, 1]

Rising Threshold Algorithm
Threshold function

f(x) = max{1/2, (2e)"1}

/

v

interval [0, 1]

Rising Threshold Algorithm
Threshold function

f(x) = max{1/2, (2e)"1}

interval [0, 1]

Rising Threshold Algorithm
Basic properties of f

f(x) = max{1/2, (2e)X_1}

g

Rising Threshold Algorithm
Basic properties of f

f(x) = max{1/2, (2e)X_1}

I
In~!(2e) ~ 0.59 1

Rising Threshold Algorithm
Basic properties of f

f(x) = max{1/2, (2e)X_1}

I
In~!(2e) ~ 0.59 1

Rising Threshold Algorithm
Basic properties of f

f(x) = max{1/2, (2e)X_1}

I
In~!(2e) ~ 0.59 1

Rising Threshold Algorithm
Basic properties of f

f(x) = max{1/2, (2e)X_1}

I
In~!(2e) ~ 0.59 1

Rising Threshold Algorithm
Basic properties of f

f(x) = max{1/2, (2e)X_1}

In~!(2e) ~ 0.59 1

Rising Threshold Algorithm
Basic properties of f

f(x) = max{1/2, (2e)X_1}

In~!(2e) ~ 0.59 1

Rising Threshold Algorithm
Basic properties of f

f(x) = max{1/2, (2e)X_1}

e e e e e e e e e e e e e e

Rising Threshold Algorithm
Basic properties of f

f(x) = max{1/2, (2e)X_1}

e e e e e e e e e e e e e e

e e o e s e o

Rising Threshold Algorithm
Most important property of f

S f(t)dt green area
f(x)-1 area below blue

L~

In~"(2€) ~ 0.59 1

= In"1(2e) ~ 0.59

Rising Threshold Algorithm
Most important property of f

S f(t)dt green area
f(x)-1 area below blue

| /

= In"1(2e) ~ 0.59

In~"(2€) ~ 0.59 1

Rising Threshold Algorithm
Most important property of f

S f(t)dt green area
f(x)-1 area below blue

1 /

= In"1(2e) ~ 0.59

In~"(2€) ~ 0.59 1

Rising Threshold Algorithm
Most important property of f

S f(t)dt green area
f(x)-1 area below blue

= In"1(2e) ~ 0.59

In~"(2€) ~ 0.59 1

Rising Threshold Algorithm

Analysis for large

J* f(t)dt
=~ 7 ~0.59
f(x)-1
l’
items exceeding threshold benefit both ALG and OPT

Rising Threshold Algorithm
Next steps

® Step 1. Algorithm for large items (1/2,1]

Rising Threshold Algorithm
Next steps

® Step 1. Algorithm for large items (1/2,1] \/

Rising Threshold Algorithm
Next steps

® Step 1. Algorithm for large items (1/2,1] \/
® Step 2. Algorithm for large and medium items (1/3,1/2]:

1 23 M

L 172

L 113
M M

(two medium items fit in 1 knapsack)

Adding medium items (1/3,1/2]

Algorithm properties
® take large items according to threshold

® never reject medium items

Adding medium items (1/3,1/2]

Algorithm properties
® take large items according to threshold

® never reject medium items

4

Observation. If finished with some empty knapsacks = optimal!

ALGL+M _ ALG
OPT, + M — OPT,;

Adding medium items (1/3,1/2]

® Case 1. Finished with some empty knapsacks \/
® Case 2. Finished with no empty knapsacks:

Adding medium items (1/3,1/2]

® Case 1. Finished with some empty knapsacks \/
® Case 2. Finished with no empty knapsacks:

A iy

Adding medium items (1/3,1/2]

® Case 1. Finished with some empty knapsacks \/
® Case 2. Finished with no empty knapsacks:

Good that

I waited for
1 1 1 them! — OPT

A iy

Three options to arrange mediums

M
M
L
M M
combine walit stack

(with large) (for large) (with medium)

How we arrange mediums

M
M
L
M M
combine wait stack
(with large) (for large) (with medium)

ALG:

How we arrange mediums

M
M
L
M M
combine wait stack
(with large) (for large) (with medium)
always

ALG:

attempt

How we arrange mediums

M
M
L
M M
combine wait stack
(with large) (for large) (with medium)
always keep

ALG:

attempt some

How we arrange mediums

M
M
L
M M
combine wait stack
(with large) (for large) (with medium)
always keep if too many

ALG:

attempt some waits

How many medium items should wait?

M

M

M

M

M

M

M

M

1M

M

M

too many waiting

U |

M

M

M

M

not enough waiting

How many medium items should wait?

In"'(2e) = 0.59 1

How many medium items should wait?

M

M

M

M

M

M

M

M

1M

M

M

too many waiting

U |

M

M

M

M

not enough waiting

How many medium items should wait?

M

M

M

M

M

M

M

M

M

M

M

too many waiting

M

M

M

M

not enough waiting

How many medium items should wait?

M

M

How many medium items should wait?

M M M M

Simplify: all mediums of size m € (1/3,1/2]

How many medium items should wait?

Answer: to have gain > 0.59

How many medium items should wait?

Each medium item is size m

® gain on waiting = m /

® gain on stacked = 2m

_ M|M
® gainonlarge > 1—m
L
M|M|M|M
—

waiting

How many medium items should wait?

Each medium item is size m M

® gain on waiting = m

® gain on stacked = 2m M| M

® gainonlarge > 1—m

M|M|M|M

»
>

f—
waiting

How many medium items should wait?

Each medium item is size m

® gain on waiting = m /

® gain on stacked = 2m -

_ M|M
® gainonlarge > 1—m
L
M|M|M|M
—

waiting

How many medium items should wait?

Each medium item is size m

® gain on waiting = m /

® gain on stacked = 2m -

_ M|M
® gainonlarge > 1—m
L
M|M|M|M
—

waiting

How many medium items should wait?

Each medium item is size m

® gain on waiting = m /
® gain on stacked = 2m -
M|M
® gainonlarge > 1—m
L
M[M[M[™m
—

waiting

How many medium items should wait?

Each medium item is size m
® gain on waiting = m /
® gain on stacked = 2m S
® gainonlarge > 1—m all
L
M|M|M|M
—

waiting

How many medium items should wait?

Each medium item is size m /
® gain on waiting = m /
® gain on stacked = 2m
® gainonlarge > 1—m
MM
L
M|M|M|M
—

waiting

How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59

How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59

How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59

How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59

How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59

How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59

Beyond single medium item

M

M

M

M

M

Beyond single medium item

M

M

Beyond single medium item size

Beyond single medium item size

0

How many should wait? For different m, different answer!

Beyond single medium item size

® Sort waiting medium items

® |ncoming medium item waits if fits below the curve

1/2%

Beyond single medium item size

® Sort waiting medium items

® |ncoming medium item waits if fits below the curve

1/2%

Beyond single medium item size

® Sort waiting medium items

® |ncoming medium item waits if fits below the curve

1/21

Beyond single medium item size

® Sort waiting medium items

® |ncoming medium item waits if fits below the curve

1/21

incoming item x

Analysis

1/21

Analysis

1/21

Possible to extend for («, 1]

(v = 0.2192)

Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A

Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A

Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A

Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A

Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A

Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A

Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A

Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A

Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A

M

Rising Threshold Algorithm is optimal for Online Knapsack

and the function
f(x) = max{1/2, (Ze)xfl}

is natural for this problem

| /

In~'(2e) ~ 0.59 1

Rising Threshold Algorithm is optimal for Online Knapsack

and the function
f(x) = max{1/2, (Ze)xfl}

is natural for this problem

| /

In"!(2e) & 0.59 1

maciej.pacut@univie.ac.at

