Optimal Algorithm for Online Multiple Knapsack
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Multiple Knapsack




Textbook Knapsack (offline)
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Given

® one knapsack of capacity 1

e multiset of items (size and weight)

Choose a subset of items
® sum of sizes <1
® maximize total weight




Proportional Knapsack (offline)
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® one knapsack of capacity 1

e multiset of items (size and-weight)

Choose a subset of items
® sum of sizes <1
® maximize total weight size 1



Multiple Knapsack (offline)

Choose a subset of items
® assign accepted items to a knapsacks
® in each knapsack: total size of items <1
® maximize total size
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Known results
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Known results

Algorithm FirstFit

I I
0.5 In"*(2¢) =~ 0.59

Adversary Randomized bound by Cygan et al.

(max objective: higher is better)



Our contributions

Algorithm FirstFit Rising Threshold Algorithm
I +
0.5 In"*(2¢) =~ 0.59
|
Adversary Randomized bound by Cygan et al.

(max objective: higher is better)



Rising Threshold Algorithm

We say that items (1/2, 1] are large
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(max 1 large per knapsack)



Rising Threshold Algorithm

Step 1. Algorithm for large items
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Rising Threshold Algorithm
(for large items)




Rising Threshold Algorithm
(for large items)

assign each knapsack a threshold (tbd)
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f(x) = max{1/2, (2e)"1}
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Rising Threshold Algorithm
Most important property of f

S f(t)dt  green area
f(x)-1  area below blue
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Rising Threshold Algorithm

Analysis for large

J* f(t)dt
=~ 7 ~0.59
f(x)-1
_l’_
items exceeding threshold benefit both ALG and OPT




Rising Threshold Algorithm
Next steps

® Step 1. Algorithm for large items (1/2,1]
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Rising Threshold Algorithm
Next steps

® Step 1. Algorithm for large items (1/2,1] \/
® Step 2. Algorithm for large and medium items (1/3,1/2]:

1 23 M

L 172

L 113
M M

(two medium items fit in 1 knapsack)




Adding medium items (1/3,1/2]

Algorithm properties
® take large items according to threshold

® never reject medium items



Adding medium items (1/3,1/2]

Algorithm properties
® take large items according to threshold

® never reject medium items

4

Observation. If finished with some empty knapsacks = optimal!

ALGL+M _ ALG
OPT, + M — OPT,;



Adding medium items (1/3,1/2]

® Case 1. Finished with some empty knapsacks \/
® Case 2. Finished with no empty knapsacks:
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Adding medium items (1/3,1/2]

® Case 1. Finished with some empty knapsacks \/
® Case 2. Finished with no empty knapsacks:

Good that

I waited for
1 1 1 them! — OPT

A iy




Three options to arrange mediums
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How we arrange mediums

M
M
L
M M
combine wait stack
(with large) (for large) (with medium)

ALG:



How we arrange mediums

M
M
L
M M
combine wait stack
(with large) (for large) (with medium)
always

ALG:

attempt




How we arrange mediums

M
M
L
M M
combine wait stack
(with large) (for large) (with medium)
always keep

ALG:

attempt some




How we arrange mediums

M
M
L
M M
combine wait stack
(with large) (for large) (with medium)
always keep if too many

ALG:

attempt some waits




How many medium items should wait?
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How many medium items should wait?
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How many medium items should wait?
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How many medium items should wait?

M M M M

Simplify: all mediums of size m € (1/3,1/2]



How many medium items should wait?

Answer: to have gain > 0.59
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How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59




How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59




How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59




How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59




How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59




How many medium items should wait?

Answer: fix m, solve for gain(#waiting) > 0.59




Beyond single medium item
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Beyond single medium item
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Beyond single medium item size




Beyond single medium item size

0

How many should wait? For different m, different answer!



Beyond single medium item size

® Sort waiting medium items

® |ncoming medium item waits if fits below the curve
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Beyond single medium item size

® Sort waiting medium items

® |ncoming medium item waits if fits below the curve
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incoming item x
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Possible to extend for («, 1]

(v = 0.2192)




Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A




Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A




Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A




Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A




Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A




Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A




Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A




Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A




Next steps: algorithm for small items (0, a]

just the idea — simply stacking small items is not enough

a =~ 0.2191 A
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Rising Threshold Algorithm is optimal for Online Knapsack

and the function
f(x) = max{1/2, (Ze)xfl}

is natural for this problem
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