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Abstract4

We consider a generalization of the online list access problem with constraints on the relative order5

of some pairs of nodes in the list. The task is to devise an online algorithm that adjusts a linked list6

of n nodes serving a sequence of node access requests σ. The cost of accessing a node v corresponds7

to v’s distance from the head of the list. After serving a request, the algorithm may rearrange8

the nodes via transpositions; each transposition costs d, where d is a parameter. The precedence9

constraints are given at the beginning, and for each constraint (u, v), the node u must be in front of10

v in every configuration of the list.11

Our main contribution is the design and analysis of a family of randomized online algorithms for12

this problem. In particular, we present a
√

7 ≈ 2.64-competitive randomized algorithm against the13

oblivious adversary for online list access with precedence constraints. Our algorithms build on the14

Markov-Move-to-Front family of algorithms for the classic online list access problem. Generalizing15

these algorithms to the setting with precedence constraints requires new ideas. To this end, in our16

analysis we partition the inversions into hidden inversions and visible inversions, to capture the17

positional relation of a pair of nodes to their precedence constraints.18

Furthermore, we present an optimal offline algorithm for list access with precedence constraints19

in the P d model and show that its running time improves as the list becomes more constrained.20
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1 Introduction23

This paper considers a natural generalization of the online list access problem [22], called24

online list access with precedence constraints [18]. In this problem, we manage a set of25

items arranged in a linked list. The nodes of the list must obey a partial order: if we have26

a precedence constraint (u, v), u must appear before v in any configuration of the list. We27

are given a sequence of access requests to the nodes of our list. Upon receiving an access28

request to a node v, an algorithm searches linearly through the list: starting from the head,29

it traverses nodes until it finds v. The access cost is proportional to the position of the node.30

After serving a request, the nodes of the list can be reordered, and for each transposition of31

(neighboring) nodes, the algorithm pays d, an integer parameter given at the beginning. If32

there are no precedence constraints, the problem is equivalent to the classic online list access.33

We often refer to precedence constraints as dependencies between nodes. In this view, we34

are given a directed acyclic graph G (the dependency graph) inducing a partial order among35

the nodes that is equivalent to the reachability relation in G. If there exists an edge (u, v)36

in G (a node v depends on a node u), then in every configuration v must be in front of u.37

The model finds applications in processing pipelines and assembly lines, where some38

stages can be executed in an arbitrary order, and the other should stay in a fixed order. In39

the context of communication networks, our model can be used in packet classification with40

the classification rules arranged in a linked list; the rules whose domains overlap need to be41

examined in a fixed order. For an overview of the approach, we refer to [18].42

We are interested in online algorithms that achieve a low (strict) competitive ratio: ideally,43

the cost of the online algorithm should be close to the cost of an optimal offline algorithm that44

knows σ ahead of time. Specifically, the competitive ratio is defined as the online algorithm’s45

cost divided by the offline algorithm’s cost. For an overview of competitive analysis, we refer46

to Appendix B.47

1.1 Contributions48

We make the following technical contributions for list access with precedence constraints.49

Our main contribution is designing and analyzing a family of randomized online algorithms50

for list access with precedence constraints. Our family of algorithms includes an algorithm51

that achieves a competitive ratio of
√

7 ≈ 2.64 against the oblivious adversary when d = 1,52

and the ratio improves as d grows. This ratio matches the competitiveness of the best53

currently known RANDOM-RESET algorithm [4, 21] from the classic list access problem.54

Although our algorithms build on foundations of Markov algorithms [10] for the classic online55

list access, the analysis must be strengthened, not to deteriorate the competitive ratios. To56

this end, we characterize a special type of inversions, called hidden inversions, to use in the57

potential function analysis framework of Sleator and Tarjan [22].58

Furthermore, we design and analyze an optimal offline algorithm for list access with59

precedence constraints in the P d model and show that its running time improves with more60

dependencies.61

1.2 Related Work62

The online list access problem has been studied for decades [15, 22], and remains an active63

field of research [2]. Its most common application models dictionaries organized in linked64

lists, with further applications in data compression [7].65
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List access cost models. The cost models for list access have evolved throughout the years.66

The first and probably the most well-known one is the free exchange model (alternatively67

known as standard cost model), where moving the accessed node to the front of the list is68

free. An extension of this model, called generalized cost model, assumes that the access cost69

can be any function of the distance of accessed node [22]. Another variant of the cost model70

is the P d model [21], which keeps the access cost equals to 1, but assumes that the cost of71

each transposition is increased to d ≥ 1. A subclass of P d model with d = 1 is called paid72

exchange model. In this paper, we focus on the general P d model. Some papers studied73

a model with batch rearrangements with linear cost [13, 16].74

Deterministic algorithms for online list access. In the paid exchange model, the75

best known deterministic algorithm is Move-To-Front (MTF) by Sleator and Tarjan [22]76

which is 4-competitive. The survey [13] suggests that the deterministic algorithm Move-To-77

Front-Every-Other-Access can be shown to be 3-competitive. Another important algorithm78

is TIMESTAMP [1]. It is known that no deterministic algorithm can be better than79

3-competitive; this lower bound is due to Reingold et al. [21].80

Randomized algorithms for online list access. In the randomized setting, the best81

known algorithm in the paid exchange model is RANDOM-RESET [21] that is
√

7 ≈ 2.64-82

competitive against the oblivious adversary, but it was suggested that randomly mixing83

RANDOM-RESET strategies for different values of the counter improves the competitive84

ratio [4]. The best algorithm for large d was given by Albers et al.: (5 +
√

17) ≈ 2.2808-85

competitive as d grows approaches infinity [2]. The best known lower bound in the paid86

exchange model against the oblivious adversary is 1.8654 [2]. The algorithms COUNTER,87

and RANDOM-RESET are members of the Markov family of algorithms for list access [10].88

Offline algorithms for list access. An optimal solution for the offline variant of list89

access problems is NP-hard to compute [5]. The problem was first studied by Reingold90

and Westbrook [20], where they developed an algorithm with a running time that contains91

a factorial term in the number of elements. Their algorithm used the subset transfer method.92

An improvement of the subset transfer method has been suggested by Divakaran [8] in93

a non-peer-reviewed manuscript, which may be investigated in future work.94

List access with precedence constraints. The closest work to ours is by Pacut et al. [18],95

who initiated the study of list access with precedence constraints and presented a 4-competitive96

deterministic algorithm, together with empirical studies in the context of input locality.97

1.3 Organization98

The remainder of this paper is organized as follows. First, in Section 2 we recall the online99

list access problem on the precedence constraint setting and the cost model used. Then, in100

Section 3 we recall the algorithm Move-Recursively-Forward [18] and concepts related to its101

design, upon which we build our randomized algorithms. We state the main contributions102

of this paper in Section 4, where we present a whole family of randomized (Markov-based)103

algorithms. Then, in Section 5 we shift our attention to offline algorithms and design an104

optimal algorithm for list access with precedence constraints. Finally, we conclude our work105

in Section 6.106
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2 Model107

2.1 Online List Access with Precedence Constraints108

We recall the model for online list access with precedence constraints [18].109

The list and the precedence constraints. We are given a linked list consisting of110

n nodes, and a set of constraints for the nodes’ relative order in the list. The constraints are111

given in the form of a directed acyclic graph (DAG) G, called a dependency graph. We say112

that a node u is a dependency of a node v if there exists a directed edge (v, u) in G. The113

nodes must comply with the order induced by G: for each node, all its dependency nodes114

must precede it in any configuration of the list.115

Access requests and their cost. We are given a request sequence σ of accesses to nodes116

of the list, arriving over time (indexed by t) in an online fashion. Upon receiving a request σt,117

an algorithm searches the list linearly from the head for the requested node. For the access,118

the algorithm pays the cost equal to the position of the node in the list. The position of119

a node is its distance to the head of the list. The position of the first node in the list is 1.120

Rearrangement cost and the P d model. After serving the request, the algorithm may121

rearrange the list by transposing neighboring nodes while complying with the precedence122

constraints encoded by G. In this paper, we analyze the algorithms in the P d model,123

introduced by Reingold and Westbrook [21]. In the P d model, the rearrangement cost is124

scaled by a positive integer d, a parameter. Immediately after serving the request, the125

algorithm may perform any number of paid exchanges, at the cost of d per each transposition126

of neighboring nodes, but the dependencies must be respected.127

The goal of the online algorithm is to minimize the total cost of access and node128

rearrangements. We study all the algorithms in this paper in the P d model.129

3 Algorithmic Building Blocks130

We build our solutions based on some concepts from previous works. In [18] a deterministic131

algorithm achieving 4-competitiveness on the precedence constrained setting and paid model132

was introduced with the name Move-Recursively-Forward (MRF). It is a natural generalization133

of the well-known Move-To-Front (MTF) algorithm [22] that also achieves 4-competitiveness134

in the P 1 model. Instead of moving the requested node to the front of the list as MTF does,135

MRF moves multiple nodes but amounting to the same number of transpositions that MTF136

uses (also identical to the node’s position in the list), thus essentially incurring the same cost.137

One of the key concepts that we use in designing algorithms in this paper is a direct138

dependency of a node u, a node that is both the dependency of u, and is positioned in the139

list, so it would be encountered first if u starts moving towards the front of the list. Direct140

dependency limits the rearrangements of a single node: to move a node closer to the front of141

the list, the direct nodes must be moved forward too.142

▶ Definition 3.1 (direct dependency). For a node u, we say a node v is u’s direct dependency143

if and only if v is the precedence constraint of u (there exists edge (u, v) ∈ G) which is located144

at the furthest position in the list among all u’s dependencies.145
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Now, we revisit how the concept of direct dependencies gave rise to the algorithm MRF [18].146

Figure 1 assists in the explanation of how the MRF uses the dependency chain to rearrange147

nodes after access. Consider an access request σt at time t addressed at a node y. Say that148

for the current list configuration, z is the direct dependency of y. First, the algorithm services149

the access and pays its incurred cost. Then, it proceeds to rearrange the list by swapping150

the position of y with its neighbors towards the head of the list until it reaches z. Note151

that y can not be swapped forward any further without incurring an infeasible transposition.152

Instead, the algorithm simply leaves y at its reached position and starts swapping z position153

with its own neighbors towards the head. Once the direct dependency of z is reached, the154

algorithm repeats the procedure recursively. When the algorithm encounters a node without155

dependencies, it moves the node to the front of the list and ends the procedure. We refer156

to the nodes that MRF moves forward after the request as sequence of direct dependencies,157

defined formally as follows.158

▶ Definition 3.2 (sequence of direct dependencies). For a node u the sequence of direct159

dependencies is a sequence of nodes ending with u, where the node at position i is a direct160

dependency of the node at position i+1. The sequence begins with a node without dependencies.161

H
E
A

D

dependencies sequence of direct

dependencies
requested node

move

Figure 1 An example of a sequence of direct dependencies for a node rδ: {r1, r2, . . . , rδ}. Upon
a request to the node rδ, the algorithm Move-Recursively-Forward moves every node ri from the
sequence just behind its direct dependency (see the blue arrows below the list). The accessed node
is depicted as a square orange node, and the nodes from the direct dependency chain are depicted
with circular orange nodes. At the left, we depict the precedence constraints for the nodes in the
list, as well as the sequence of direct dependencies (r1, . . . , rδ) of the requested node and the moves
(transpositions) to be performed by MRF. At the right, we depict the DAG inducting the precedence
constraints between the nodes.

We can find the sequence of direct dependencies by recursively following the direct depen-162

dencies, starting from rδ, until encountering the first node that does not have dependencies.163

The algorithm Move-Recursively-Forward was analyzed [18] using a potential function,164

defined in terms of inversions. The inversion is the central concept in the analysis of the165

presented algorithms in this paper.166

▶ Definition 3.3 (Inversion). An inversion between two lists, L1 and L2, is an ordered pair167

of nodes (u, v) such that u is located before v in L1, and u is located after v in L2.168

We denote the set of all inversions between lists L1 and L2 by inv(L1, L2). In the potential169

function analysis of our algorithms, we always consider inversions between ALG’s and OPT’s170

list, i.e., inversions are chosen from the set inv(ALG, OPT).171
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4 A Family of Randomized Algorithms172

In this section, we first present the main result of this paper: a family of randomized algorithms173

called Markov Move Recursively Forward (MMRF). We show that the competitive ratio174

of MMRF in our model with precedence constraints matches the competitive ratio of175

Markov-Move-to-Front [10] in the model without precedence constraints under potential176

function analysis. The novelty of our analysis lies in the concept of hidden inversions and177

a potential function based on hidden inversions. We demonstrate how our algorithm results in178

a 2.64-competitive algorithm which is also the best-known ratio in the classic model without179

precedence constraints. We note that generalizing the result poses an algorithmic challenge180

(see Section C), and new analytical ideas are needed.181

4.1 MMRF: Markov-Move-Recursive-Forward182

We present MMRF, a family of randomized algorithms for the list access problem with183

precedence constraints. Each algorithm in the family is characterized by a Markov chain,184

which is initialized for every item in the list.185

Markov chain. Let M be an irreducible Markov chain with a finite set of states SM =186

{0, 1, ...s − 1}, transition probabilities P = (pi→j) and has a stationary distribution π =187

(π0, π1, ...πs−1) where pi→j denotes the transition probability from state i to state j and πi188

denotes the stationary probability of a state i. We denote by hi→j , the hitting time from189

state i to state j in M , where i, j ∈ SM . Similar to [10], the hitting time to state 0 plays190

a crucial role in our analysis. For simplicity, we write hi for the hitting time hi→0. We denote191

by T the expected hitting time to state 0, given by T =
∑s−1

i=0 πi · hi.192

Algorithm 1 The algorithm Markov-Move-Recursively-Forward.

Initialization : Each node’s Markov chain is initialized according to the stationary
distribution π.

Input : An access request to node σt

1 Access σt

2 Run the procedure MMRF(σt)

3 procedure MMRF(y):
4 Let z be the direct dependency of y

5 if state(y) is 0 then
6 Move node y to pos(z) + 1 ▷ Move y behind its direct dependency
7 end if
8 Transition to state j with probability pstate(y)→j

9 if pos(z) ̸= 0 then ▷ If a dependency is found
10 Run the procedure MMRF(z) ▷ Recursion
11 end if
12 Exit

Algorithm overview. Our algorithm MMRF relies on the MMRF procedure to handle193

dependencies. Each node in the list is associated with a Markov chain (defined above), and194

the initialization is done according to the stationary distribution π. We denote the state195

of a node y by state(y). Upon request to an item y, the node y is moved forward in the196
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list, however only behind its direct dependency not always to the head of the list. Upon197

receiving a request to node σt, we run the procedure MMRF(σt). The procedure MMRF(y)198

computes z, the direct dependency of y. Our algorithm then executes MMRF(z) which199

triggers recursion until no direct dependency is found, i.e., z is the head of the list.200

Algorithm MMRF definition. Let pos(z) denote the position of node z in the list201

maintained by the algorithm, starting from 1. MMRF(y) checks the state of y, and if it202

is 0, then it moves y forward (via transpositions), until it encounters the direct dependency203

node z, treated as the virtual head of the list. The state of y then transitions to a state j204

with probability pstate(y)→j and the procedure recursively calls MMRF(z) if pos(z) ̸= 0. We205

present the pseudocode of MMRF in Algorithm 1.206

4.2 Types of Inversions207

We introduce a concept of hidden inversions, a type of inversions defined by both the208

counter value of the nodes and the relative position of the nodes with respect to their209

dependencies. Hidden inversions limit the effect of inversions changing type: each hidden210

inversion contributes a neutral value to the potential function (independent of the state).211

We classify inversions into two types: hidden and visible. The intuition behind classifying212

inversions into hidden and visible is that the movement of a node can only destroy visible213

inversions. Consider the example in Figure 2. Hidden inversions with respect to the node r2214

are those that cannot be destroyed; since r2 can only move forward to a position behind its215

direct dependency r1. The movement of r2 can however destroy all visible inversions, i.e.,216

the inversions between r2 and r1.217

Visible type-{0,1,...,s-1} inversion

Hidden inversion

ALG

OPT

H
E
A

D

Figure 2 Consider the node r2 and its direct dependency r1. The region from the head of the list
until r1 is the hidden region Hr2 with respect to r2. Any inversion of the form (u, r2) is classified
as (i) hidden inversion if u lies in the hidden region of r2, otherwise (ii) visible inversion if u lies
between r1 and r2. For intuition, notice that the movement of r2 can only destroy visible inversions
and cannot destroy any hidden inversions. This is due to the precedence constraints i.e., r2 cannot
be moved ahead of its dependency r1.

▶ Definition 4.1 (Hidden regions H.). For every node v in the list, we define a hidden region218

denoted by Hv as the set of nodes in front of the direct dependency of v in ALG’s list.219

▶ Definition 4.2 (Hidden and visible inversions.). An inversion (u, v) is hidden if u is in Hv,220

the hidden region of v. An inversion (u, v) is visible if u’s position in the list is after v’s221

direct dependency and before v i.e., u is outside the hidden region of v. Visible inversions222

are further classified as type-i where i is the state of v.223
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4.3 Definitions Related to a Request224

We recall the notations of sets and sequence of nodes relevant to our analysis.225

Nodes rj. Consider a single request to a node σt and the sequence of direct dependencies226

computed recursively by MMRF procedure at time t. Let r be the sequence of the nodes227

that the algorithm executes on, ordered by increasing distance to the head. Let δ be the228

length of r. We emphasize that r contains the requested node at the last position, σt = rδ.229

Values k and ℓ. To compare the cost of ALG and OPT, we define values k and ℓ related230

to the number of nodes in front of the requested node σt in ALG’s and OPT’s list. Precisely,231

let k be the number of nodes before σt in both ALG’s and OPT’s lists, and let ℓ be the232

number of nodes before σt in ALG’s list, but after σt in OPT’s list.233

Sets Kj and Lj. With the values k and ℓ, it is possible to analyze the classic algorithm234

Move-To-Front, yet they are not sufficient to express the complexity of MMRF. Hence, we235

generalize the notion of k and ℓ to sets of elements related to positions of individual nodes rj236

in ALG’s and OPT’s lists. Precisely, let Kj be the set of elements before rj in both ALG’s237

and OPT’s lists for j ∈ [1, δ], and let Lj be the set of elements before rj in ALG’s list but238

after rj in OPT’s list. We note that these sets are generalizations of k and ℓ: for the accessed239

node rδ we have k = |Kδ| and ℓ = |Lδ|.240

Sets Sj. The sets of nodes between the nodes r in ALG’s list are crucial to the analysis.241

Intuitively, the node ri’s movement is confined to all the nodes from the set Si. Let S1 be242

the elements between the head of ALG’s list and r1 (included). For j ∈ [2, δ], let Sj be the243

set of elements between rj and rj−1 (with rj−1 excluded) in ALG’s list.244

4.4 The Analysis of MMRF245

Our analysis in this section is based on amortized cost analysis in the P d model. Hereafter246

in this section, we refer to MMRF as ALG and an optimal algorithm as OPT. We analyze247

the competitiveness of ALG against an oblivious adversary.248

First, we discuss the potential function used to relate the cost ALG and OPT. The249

potential function is designed around the concept of hidden inversions (cf. Section 4.2).250

Second, we claim that the state of each node in ALG remains at the stationary distribution251

and is independent of other nodes in the list. Third, we bound the amortized cost of the252

algorithm on a single request; to this end, we inspect individual executions of the recursive253

procedure MMRF. Finally, we bound the competitive ratio of the algorithm.254

Potential function. We compare the costs of ALG and an optimal offline algorithm OPT255

on σ using the potential function Φ defined as256

Φ =
s−1∑
i=0

(d + hi) · Φi + (d + T ) · Φh,257

where Φi is the number of inversions of type-i (visible inversions) and i ranges from 0 to s− 1,258

corresponding to each state in M ; Φh is the number of hidden inversions. Recall that T is259

the expected hitting time to state 0 and is given by T =
∑s−1

i=0 πi · hi.260

State independence. Our analysis uses an observation that the state of nodes in MMRF’s261

list are initialized according to the stationary distribution and remain independent of each262

other at the stationary distribution as the states change over time.263

▶ Observation 4.3. The state of any node y in ALG’s list is i with probability πi at any264

time (0 ≤ i < s), independent of its position in OPT’s list and other nodes’ states.265
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4.4.1 How Does Node Movement Influence Hidden Inversions?266

The crucial part of our analysis is the change in the potential due to changes in hidden267

inversions. The result of this section is that it suffices to only consider visible inversions in268

the amortized cost analysis, contrary to considering all inversions. There are two cases for269

changes in hidden inversions: movement of a node in ALG’s list or movement of a node in270

OPT’s list.271

Movement of a node in ALG’s list. Fix a single reconfiguration of the algorithm while272

serving the request σt, and consider a single node rj that moves forward in a call of procedure273

MMRF. The move of rj may cause any of the following:274

– A hidden inversion may become visible (moves outside the hidden set), and becomes275

type-i inversion.276

– A visible type-i inversion may become hidden inversion.277

– A new hidden inversion may be created.278

Movement of a node in OPT’s list. For each transposition OPT pays d and may create279

a new inversion. The new inversion is either hidden or visible type-i.280

We claim that the change in potential due to inversions changing type from and to hidden281

inversions is zero. In the following, we first prove that the expected change in potential due282

to any inversions that change type from hidden to a visible type is zero. We then prove the283

vice versa i.e., the expected change in potential due to inversions which change from any284

visible type to hidden is zero.285

▶ Lemma 4.4. In moving a node rj forward in the list, the expected change in potential due286

to inversion type changes from hidden to a visible type is zero.287

Proof. Consider any inversion (u, v) that changes type from hidden to any visible type-i.288

Let (u, rj , v) be the order of nodes in the list, where rj is the direct dependency of v. Note289

that the presence of rj between u and v is required such that u lies in the hidden region of v.290

For such an inversion to change from hidden to visible, rj must move ahead of u, thereby291

leaving u in the visible region of v. The visible inversion type is then based on the state of v.292

This change in inversion type is caused by the movement of rj and is related to neither u293

nor v. By Observation 4.3, the probability that the state of v is i is given by the stationary294

probability πi, and consequently, the probability that the inversion is of visible type-i is πi.295

Thus, the potential value for this inversion changes from d + T to d + hi, with probability πi.296

Hence the expected change in the potential is zero i.e.,
∑s−1

i=0 πi · ((d + hi) − (d + T )) = 0,297

since T =
∑s−1

i=0 πi · hi and
∑s−1

i=0 πi = 1. ◀298

▶ Lemma 4.5. In moving a node rj forward in the list, the expected change in potential due299

to inversion type changes from any visible type to hidden is zero.300

Proof. Consider any inversion (rj , v) that changes type from a visible type to hidden. Let u301

be the direct dependency of v such that (u, rj , v) is the order of nodes in the list. Note that302

the presence of rj between u and v is required such that rj lies in the visible region of v. For303

such an inversion to change from visible to hidden, rj must move ahead of u so that rj lies in304

the hidden region of v. The original visible inversion type is based on the state of v, which is305

independent of the state of rj and u. By Observation 4.3, the probability that the state of306

v is i is given by the stationary probability πi, and consequently, the probability that the307

visible inversion is of type i is πi. Thus, the potential value for this inversion changes from308

d + hi (with probability πi) to d + T . Hence the expected change in the potential is zero,309

i.e.,
∑s−1

i=0 πi · ((d + T ) − (d + hi)) = 0, since T =
∑s−1

i=0 πi · hi and
∑s−1

i=0 πi = 1. ◀310
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▶ Theorem 4.6. The expected change in the potential due to inversion type changes from311

and to hidden inversions is zero.312

Proof. The claim follows from Lemma 4.4 and Lemma 4.5, by summing over all inversions313

that change their type to hidden and all inversions that change their type from hidden. ◀314

We now claim that the change in potential due to a created hidden inversion equals the315

expected change in potential if the created inversion is a visible type-i inversion.316

▶ Theorem 4.7. The change in potential due to a created hidden inversion equals the expected317

change in potential due to a created visible inversion.318

Proof. For each created hidden inversion, the change in potential ∆Φ = d + T . If the created319

inversion is a visible inversion, the inversion is of type-i with probability πi. The expected320

change in potential is then E[∆Φ] =
∑s−1

i=0 πi · (d + hi) = d + T . The last equality holds since321

T =
∑s−1

i=0 πi · hi. ◀322

4.4.2 Amortized Cost of a Request323

Consider an irreducible Markov chain M with s states, stationary distribution π = (π0, π1, ...,324

πs−1) and transition probabilities P = (pi→j). The goal of our analysis in this section is to325

determine the upper bound of competitive ratio of MMRF algorithm that operates on M .326

Let a(t) be the amortized cost of ALG in serving a request t and the cost incurred by327

OPT be COPT(t). We split the amortized cost of ALG as a(t) = Cacc(t) + Cre(t) + ∆Φ,328

where ∆Φ = A + B + F + H is the change in potential, Cacc(t) is the access cost, Cre(t) is329

the cost for paid transpositions i.e., reconfiguration cost, A is the change in potential due to330

created inversions, B is the change in potential due to destroyed inversions, F is the change331

in potential due to inversions that change type and H is the inversions that change type to332

and from hidden inversions.333

Let rδ be the requested item. Since the movement of the items rj (see Algorithm 1) is334

independent for all 1 ≤ j ≤ δ, we represent the amortized cost a(t) as shown in Equation 1,335

where the superscript j indicates the changes in potential due the movement of rj . This336

accounts for the access cost, paid transpositions and all the changes in potential.337

a(t) = Cacc(t) + Cre(t) + ∆Φ =
access cost︷ ︸︸ ︷
Cacc(t) +

amortized reconfiguration cost︷ ︸︸ ︷
δ∑

j=1
Cj

re(t) + ∆Φj . (1)338

4.5 Bounding the Competitive Ratio339

Finally, we combine the observations made so far to bound the competitive ration of MMRF.340

341

▶ Theorem 4.8. Let M be an irreducible Markov chain. The MMRF algorithm that operates342

on M has a competitive ratio that is upper bounded by max{1 + π0 · (2d + T ), 1 + T
d } against343

the oblivious adversary.344

Using hidden inversions and the results of Section 4.4.1, analysis of the amortized cost of345

request is straight-forward. We defer the proof to Appendix D.1.2 and sketch it next.346

Consider any sequence of access requests σ. In order to prove our claim, it suffices to347

show that the expected amortized cost of MMRF in serving a request at any time t is348
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E[a(t)] ≤ C · COPT, where C = max{1 + π0 · (2d + T ), 1 + T
d }. We distinguish between the349

following types of events that occur throughout the algorithm’s execution:350

Event-1: An access request event where both ALG and OPT serve the request. This event351

includes any paid transpositions made by ALG. We assume a fixed configuration of OPT352

throughout this event. First, we analyze each node rj separately and obtain the expected353

amortized reconfiguration cost due to the item rj . Then we sum over all nodes rj on which354

MMRF is executed and add the access cost of k + l + 1 to obtain the total amortized cost of355

the request. In each step, we analyze all changes in inversions i.e., created, destroyed, and356

inversion type changes.357

E[Cacc(t) + Cre(t) + ∆Φ] ≤ k · (1 + π0 · (2d + T )) + 1 ≤ k · (1 + π0 · (2d + T )) · COPT,358

where the last inequality holds as OPT pays at least k + 1 for serving the access request at359

time t.360

Event-2: A paid exchange event of OPT, a single paid transposition performed by OPT,361

where it either creates or destroys a single inversion with respect to the node σt. We assume362

a fixed configuration of ALG throughout this event. OPT pays d for any paid transposition363

and at most one new inversion is created. The created inversion is either a hidden or visible.364

From Theorem 4.7, irrespective of whether the created inversion is hidden or visible, the365

expected change in potential is d + T = COP T · (1 + T
d ).366

From Event-1 and Event-2, the expected amortized cost of MMRF is bounded by max{1 +367

π0 · (2d + T ), 1 + T
d } · COP T which concludes the proof. The full formal proof appears in368

Appendix D.1.2.369

We summarize the competitive ratios of some randomized algorithms in the MMRF370

family. We consider the COUNTER and RANDOM-RESET class of algorithms that were371

first proposed by Reingold et al. [21] for the classic list access problem without precedence372

constraints. Both COUNTER and RANDOM-RESET can be represented as a Markov chain.373

Given a Markov chain M that corresponds to COUNTER and RANDOM-RESET class, with374

s states, Table 1 (in the appendix) summarizes the competitive ratio of MMRF algorithms375

in the model with precedence constraints. Interestingly, the competitive ratios in our model376

match the ratios in the classic model. Notably, RANDOM-RESET remains the best even377

with precedence constraints for d = 1 and has a ratio of 2.64.378

5 An Offline Algorithm379

This section introduces an optimal offline algorithm for list access with precedence constraints380

in the P d model for any positive integer d. Our method generalizes the dynamic algorithm381

introduced by Reingold and Westbrook [20] and benefits from the permutation generation382

technique proposed by Ono and Nakano [17].383

The running time of our algorithm is proportional to the number of possible node384

permutations (respecting dependencies) and the length of the input sequence, providing385

a significant improvement on instances with dense dependency structures.386

5.1 Subset Transfer387

A building block of our offline algorithm is the subset transfer operation which was first388

suggested by [20]. This operation lets us build our algorithm based on a restricted set of389

operations among all possibilities, reducing the running time of our algorithm significantly.390
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▶ Definition 5.1. A subset transfer is a set of paid exchanges taking place between serving391

the request σt−1 and σt, consists of moving only a subset of nodes preceding σt in the list to392

the right after it.393

The following lemma enables us to prove Theorem 5.3 in lists with precedence constraints.394

We show that the cost of transforming one list to another (using paid exchanges) is exactly d395

times the number of inversions between the two lists.396

The proof of the lemma is based on induction and looking at properties of the first node397

one of the lists. We defer the details of the proof to Appendix D.2.398

▶ Lemma 5.2. The cost of reconfiguring list L2 to list L1 (that share the same dependency399

graph) using paid exchanges is d times the number of inversions between L1 and L2.400

In the next theorem, we show that subset transfer operations are sufficient for an optimal401

offline algorithm.402

▶ Theorem 5.3. There exists an optimal offline algorithm for list access with precedence403

constraints that only performs subset transfers.404

The schema of the proof of Theorem 5.3 is due to Reingold and Westbrook [20], and we405

extend it to the general case of lists with precedence constraints, benefiting from Lemma 5.2.406

The idea of the proof is transforming an optimal sequence of paid exchanges to another407

sequence of paid exchanges that only uses subset transfer, without any additional cost. The408

details of the proof are in Appendix D.2.409

5.2 Design of the Algorithm410

We now detail our dynamic algorithm and show how the cost for an access request can be411

updated from the costs of the previous request. We also discuss the permutation generation412

method which is required for the algorithm. In the end, we formulate the running time and413

show how the dynamic algorithm can be implemented with improved space complexity.414

Details of the dynamic algorithm. Consider COF F (L, t) to be the minimum cost of415

serving access requests up to time t and ending up with the list L. Assume posX(σt) to be416

the position of accessed node at time t in a list X. We fill the dynamic table of our algorithm417

by finding a list L′ that minimizes the cost of serving requests up to the request at time418

t − 1, plus the cost of accessing the node at time t (which is equal to the position of σt in the419

list L′), and the cost of transforming L′ to L, which we know based on Lemma 5.2 is d times420

the number of inversions between L and L′. In summary, we calculate the cost COF F (L, t)421

as follows. The optimal cost for serving all requests is the minimum of COff (L, m) over all422

possible lists respecting dependencies.423

COF F (L, t) = minL′ [COF F (L′, t − 1) + posL′(σt) + d · inv(L′, L)].

However, we do not need to check all possible lists to find the optimal one. Based on424

theorem 5.3, it is sufficient to only check lists L′ that can be transformed to L using only425

a subset transfer. Finding those lists is based on a procedure that we call reverse subset426

transfer. Concretely, the procedure Rev(L, t) constructs all lists L′ that can be transformed427

to L using subset transfers.428

We describe the procedure Rev(L, t) in terms of a recursive subroutine Rev(L, 1, posL(σt)).429

The subroutine Rev(L, i, j) generates all lists that can be transformed into L using subset430

transfer, such that the requested node is placed at the position j in the list L, and the subset431
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transfer only involves elements from the position j in the list L′ or afterwards. To do so, we432

consider the node at position j + 1 and move it one step closer to the head of the list(if this433

movement respects dependencies). Assume that we moved the node to the position k, we434

then invoke the recursive call Rev(L, k + 1, j + 1) to possibly move the next nodes in L.435

Generating permutations respecting precedence constraints. Our algorithm relies436

on generating all permutations of nodes respecting precedence constraints. Algorithms for437

another interpretation of this problem, namely generating all topological sorts, have been438

known for quite a while [12, 14, 19]. However, most of the old approaches create each439

permutation in O(n). We benefit from the algorithm proposed by Ono and Nakano [17].440

The running time of their algorithm only differs within a constant factor to the size of all441

possible permutations.442

The running time of the offline algorithm. To find the optimal solution, it suffices to443

fill all the entries of our dynamic table. Therefore, the running time of our algorithm is equal444

to the number of entries of the dynamic table times the time required to fill each of them.445

The number of entries of our dynamic table is m · |Perm|, in which |Perm| shows the446

number of possible permutations. The time required for each entry of our dynamic table447

equals the time required for running the reverse subset transfer procedure. Each step of this448

procedure requires O(1) time, and there are at most 2n choices of nodes to be considered.449

Hence, the sum of the running time of the procedure for a list and a request is O(2n).450

Summing the cost over all possible lists gives us the total running time of O(2n · m · |perm|).451

We can see that the running time of the optimal offline algorithm improves as the number of452

permutations reduces, which happens as more precedence relations are introduced.453

Optimizing the required space. The required space for a trivial implementation has454

both the number of permutations and the number of requests as a factor in it. However,455

as we only need costs from the previous request to find the cost of each access request,456

maintaining a table with the size of twice the number of permutations is sufficient.457

6 Conclusions and Future Directions458

We successfully transferred a family of randomized algorithms for online list access to online459

list access with precedence constraints without deteriorating the competitiveness. Moreover,460

we showed how an optimal offline algorithm could be designed for the setting with precedence461

constraints. Our results suggest that introducing precedence constraints makes the problem462

no harder than online list access.463

Although we reach the competitiveness of the classic list access, several avenues of research464

remain open. The transferred family of algorithms does not include the TIMESTAMP465

algorithm [1], and an interesting question arises if this algorithm can be adapted to the466

setting with precedence constraints with unchanged competitive ratio. The algorithms for467

online list access problem improve with locality of reference [3], and experimental results for468

the case with precedence constraints [18] confirm a similar trend, which may be explained469

analytically. For offline algorithms, an improvement of the subset transfer method has been470

suggested by Divakaran [8] in a non-peer-reviewed manuscript, and this direction may be471

investigated in future work, also in the context of precedence constraints.472
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A Lifting Classic List Access Algorithms to MMRF Family521

The two classic algorithms for online list access that we discuss were first proposed by522

Reingold et al. [21], and extended to many other randomized algorithms [2, 4]. Here we523

detail the transformation for two of these algorithms, which are also considered by [10].524

  

Figure 3 An example of the Markov chain representation of RANDOM-RESET(s, D). The
diamonds represent states of the Markov chain, and the arrows are transitions between two states,
indexed with the transition probability. The state 0 that initiates the movement in the list is shown
in blue.

COUNTER with precedence constraints. In a COUNTER(s) algorithm, each node525

has a counter internalized with an integer value chosen uniformly at random from the range526

[0, s). The algorithm decreases the counter of each node after it was chosen, moves the node527

if its counter was 0, and resets the counter back to s − 1. As an example of algorithms in the528

COUNTER family, consider the extension of the known BIT algorithm, which has two states529

which are flipped after every access, and movement only happens if states are equal to 0.530

BIT algorithm can be expressed as COUNTER(2). Using the using transition probability531

below, we can express the COUNTER algorithm in terms of MMRF.532

∀ 0 < i < s, pi→(i−1) = 1, p0→s−1 = 1

RANDOM-RESET with precedence constraints. In the RANDOM-RESET(s, D)533

algorithm, we assign counters to nodes similar to RANDOM-RESET. During the execution534

of MMRF on a node, the counter reduces by one (modulo s), and the node moves if the535

counters equal to 0, then goes to another state chosen based on the probability distribution536

D. Formally, RANDOM-RESET(s, D) is MMRF algorithm with the following transition537

probability (depicted in Figure 3).538

∀ 0 < i < s, pi→(i−1) = 1, ∀ 0 ≤ i < s, p0→i = dx

MMRF-COUNTER MMRF-RANDOM-RESET
d best s competitive ratio best s competitive ratio
1 2 2.75 3 2.64
2 5 2.50 5 2.45
3 7 2.43 8 2.39
4 10 2.38 10 2.36
5 12 2.38 13 2.34
6 15 2.33 15 2.33

Table 1 Competitive ratio of special cases of Markov algorithms, with increasing value d in P d

model.
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The optimal number of states. Table 1 summarizes optimal competitive ratios for the539

two mentioned algorithms, showing the number of states required to achieve the optimal540

ratio in each case. This table has equivalent values as derived by Reingold et al. [21], which541

shows the same ratios can be achieved even in lists with precedence constraints.542

B Overview of Online Algorithms and Competitive Analysis543

Online algorithms receive as input a sequence σ = σ1, . . . , σt, . . . , σm of requests one at544

a time without knowledge of the future requests. This means that at any given time t, the545

algorithm has no information about requests σt+τ ∀τ > 0. The algorithm must serve each546

request right after receiving it, at a certain cost that depends on the system state. However,547

they can take actions to minimize the total cost of serving the whole sequence, although said548

actions may themselves have a cost of their own that must be accounted for.549

Deterministic and randomized algorithms. A fundamental classification of online550

algorithms lies in how predictable they are. Essentially, deterministic algorithms are those551

whose actions and state at any point in time t can be is perfectly well-known given the552

algorithm description and the (sub) sequence of requests up to time t.553

On the other hand, randomized algorithms make use of at least one source of randomness.554

Consequently, even with perfect knowledge of the algorithm (including the involved probabil-555

ities distributions) and the current subsequence of requests, the available knowledge about556

its state and behavior remains probabilistic.557

Competitiveness. Performance of online algorithms is typically evaluated with the com-558

petitive analysis [22]. Under this framework, the performance of an algorithm can be559

measured by comparing its cost with the cost of an optimal offline algorithm over all possible560

sequences. The goal is then to design online algorithms with worst-case guarantees against561

the optimal. Let ALG(σ), resp. OPT(σ), be the cost incurred by a deterministic online562

algorithm ALG, resp. by an optimal offline algorithm, for a given sequence of requests σ.563

In contrast to ALG, which learns the requests one at a time as it serves them, OPT has564

complete knowledge of the entire request sequence σ ahead of time.565

In particular, ALG is said to be strictly c-competitive if for any input sequence σ it holds566

that567

ALG(σ) ≤ c · OPT(σ).568

The minimum c for which ALG is c-competitive is called the competitive ratio of ALG.569

The concept can be naturally extended to randomized algorithms; we say that a random-570

ized online algorithm RAND is c-competitive if571

E[RAND(σ)] ≤ c · OPT(σ) + b572

for any possible input sequence σ and a fixed constant b. In this context, the input sequence573

and the benchmark solution OPT are generated by an adversary. Notice that competitive574

ratios for a given problem may vary depending on the adversary’s power; recall that different575

adversarial models have different knowledge about RAND while producing the offline576

benchmark solution OPT.577

For an overview of the competitive analysis framework, we refer the reader to [6].578
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Adversaries. The goal of an adversary is to generate a request sequence that maximizes579

the competitive ratio of the algorithm. Under this assumption, there are several adversarial580

models that distinguish themselves by the amount of information they have about the581

algorithm. The key distinction is whether the adversary knows the outcome of the random582

choices made by the algorithm on past requests.583

In this paper, we design algorithms against the oblivious offline adversary. An adversary584

of this type only knows the description of the algorithm, and it generates the entire input585

sequence before the start of the algorithm. For a randomized algorithm, the oblivious586

adversary is aware of the probability distribution used by the algorithm; however, it has no587

knowledge of the algorithm’s random choices.588

For an extensive overview of adversary types, we refer to [6].589

C Challenges in Randomizing MRF590

Using ideas from MRF to design a randomized algorithm achieving a better competitive591

ratio turns out to be non-obvious. This is due to the insufficiency of analysis techniques592

from the classic list update problem, and new ideas for the potential function analysis are593

needed. For instance, distinguishing inversions based only on their type (the current state of594

the node in the back) cannot express any information concerning precedence constraints.595

To emphasize the problem, we describe a naive adaption of the well-known BIT algo-596

rithm [21] to the model with precedence constraints: Initialize the list with 0 or 1 bit counters597

uniformly at random; upon request to a node, execute Move-Recursively-Forward if the598

item’s bit value is 0; flip the bit on every request. This strategy leads to a competitive ratio599

no better than 3 using existing potential function analysis; extending counters beyond two600

bits does not help.601

To better understand the problem, consider the following aspects of BIT’s analysis in the602

setting without precedence constraints. In the classic model without precedence constraints,603

the Move-to-Front action in BIT destroys all inversions w.r.t the requested item. In contrast,604

in our model with precedence constraints, moving an item behind its direct dependency605

destroys only the inversions between the two items. All other inversions w.r.t the moving606

item change their type, which leads to the competitive ratio of 3, which does not reach the607

competitiveness of BIT in the classic list access (2.75-competitive).608

To address this issue, we must limit the influence of changing type in inversions due to609

nodes’ bits flipping. To this end, we introduce the concept of hidden inversions, a type of610

inversions defined by both the counter value of the nodes and the relative position of the611

nodes with respect to their dependencies. We elaborate in the next section.612

D Omitted Proofs613

D.1 Proofs from Section 4614

▶ Theorem 4.8. Let M be an irreducible Markov chain. The MMRF algorithm that operates615

on M has a competitive ratio that is upper bounded by max{1 + π0 · (2d + T ), 1 + T
d } against616

the oblivious adversary.617

Before analyzing the competitive ratio of MMRF, we first state and prove the results618

required to obtain the competitive ratio. We present the proof of Theorem 4.8 at the end of619

this section.620
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D.1.1 Amortized Cost of a Request621

We first state an important property of the Markov chain, which plays a crucial role in our622

analysis.623

▶ Lemma D.1. Given a Markov Chain with s states, stationary distribution π, transition624

probabilities (pi→j) and the hitting time hi from state i to 0, the following equality holds:625

s−1∑
i=1

s−1∑
k=0

πi · pi→k · (hk − hi) = 0.626

Proof.
s−1∑
i=1

s−1∑
k=0

πi · pi→k · (hk − hi) =
s−1∑
i=1

πi

(
s−1∑
k=0

pi→k · hk −
s−1∑
k=0

pi→k · hi

)
627

=
s−1∑
i=1

πi

((
s−1∑
k=0

pi→k · hk

)
− (hi)

)
628

= −
s−1∑
i=1

πi · hi +
s−1∑
i=1

s−1∑
k=0

πi · pi→k · hk629

= −
s−1∑
i=1

πi · hi +
s−1∑
k=0

hk

s−1∑
i=1

πi · pi→k630

= −
s−1∑
i=1

πi · hi +
s−1∑
k=0

hk(πk − π0 · p0→k)631

= −(T − π0 · h0) + T − π0 ·
s−1∑
k=0

hk · p0→k632

= π0 · h0 − π0 · h0633

= 0634
635

◀636

We now analyze the expected amortized reconfiguration cost due the movement of a single637

relay node rj and later sum over all recursive calls of MMRF procedure.638

▶ Lemma D.2. Consider an access request σt served by ALG, and consider a single run of639

the procedure MMRF for some node rj during the recursive call of MMRF procedure. The640

expected cost of transpositions that rj participated in, and the potential change due to these641

transpositions is given by, E[Cj
re(t) + ∆Φj ] ≤ |Kj ∩ Sj | · (2d + T ) · π0 − |Lj ∩ Sj | · h0 · π0.642

Proof. Let the state of the node rj be state(rj) = i at the time of access and changes to643

state′(rj) = k after reconfiguration.644

– Case-1: The state of rj is state(rj) = i where i ≠ 0 and hence rj is not moved forward645

in the list.646

(1) Reconfiguration cost is zero i.e., Cj
re(t) = 0, since there are no paid transpositions647

(2) Change in potential due to destroyed inversions is zero i.e., Bj = 0648

(3) There are |Lj ∩ Sj | inversions of type i (at the time of access), which flip to type649

k since the state of rj changes from i to k. The change in potential due to flipped650

inversions is then |Lj ∩ Sj | · (hk − hi)651
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(4) Since the item does not move forward, no inversions change from hidden to type i652

and vice versa i.e., Hj = 0653

(5) No new inversions are created i.e., Aj = 0654

The expectation of Cj
re(t) + ∆Φj in this case is given by,655

E[Cj
re(t) + ∆Φj | (state(rj) = i), (state′(rj) = k)] ≤ |Lj ∩ Sj | · (hk − hi)656

– Case-2: The state of rj is state(rj) = 0 and hence rj is moved forward in the list by657

paid transpositions. The node rj is moved to the position just after its direct dependency.658

(1) Reconfiguration cost is Cj
re(t) = |Sj | · (d) = (|Kj ∩ Sj | + |Lj ∩ Sj |) · d659

(2) |Lj ∩Sj | inversions which are initially of type 0 at the time of access, get destroyed660

since rj moves forward i.e., Bj = −(d + h0) · |Lj ∩ Sj |661

(3) There are no old inversions which change their type and hence F j = 0662

(4) The expected change in potential due to any inversion that changes from type i663

to hidden and from hidden to a type i is zero i.e., E[Hj ] = 0664

(5) At most |Kj ∩Sj | new inversions are created. Each new inversion is either a hidden665

inversion or a visible inversion of type i. If the created inversion is hidden, then the666

increase in potential is d+T . If the created inversion is visible, then the inversion is667

of type i with probability πi due to state independence of nodes (Observation 4.3)668

i.e., the expected change in potential is
∑s

i=0 πi · (d + hi) = (d + T ). In total,669

E[Aj ] ≤ |Kj ∩ Sj | · (d + T )670

The expectation of Cj
re(t) + ∆Φj in this case is given by,671

E[Cj
re(t)+∆Φj | (state(rj) = 0), (state′(rj) = k)] ≤ −|Lj ∩Sj | ·h0 + |Kj ∩Sj | · (2d+T )672

The expected amortized reconfiguration cost for the node rj is obtained as follows:673

E[Cj
re(t) + ∆Φj ]674

=
s−1∑
i=1

s−1∑
k=0

πi · pi→k · E[Cj
re(t) + ∆Φj | (state(rj) = i), (state′(rj) = k)]675

+
s−1∑
k=0

π0 · p0→k · E[Cj
re(t) + ∆Φj | (state(rj) = 0), (state′(rj) = k)]676

=
s−1∑
i=1

s−1∑
k=0

πi · pi→k · (|Lj ∩ Sj | · (hk − hi))677

+
s−1∑
k=0

π0 · p0→k (−|Lj ∩ Sj | · h0 + |Kj ∩ Sj | · (2d + T ))678

= |Lj ∩ Sj | ·
s−1∑
i=1

s−1∑
k=0

πi · pi→k · (hk − hi) + |Kj ∩ Sj | · (2d + T ) · π0 − |Lj ∩ Sj | · h0 · π0679

= |Lj ∩ Sj | ·

(
−h0 · π0 +

s−1∑
i=1

s−1∑
k=0

πi · pi→k · (hk − hi)
)

+ |Kj ∩ Sj | · (2d + T ) · π0680

681

Using Lemma D.1, we substitute
s−1∑
i=1

s−1∑
k=0

πi · pi→k · (hk − hi) = 0 in the above equation to682

obtain E[Cj
re(t) + ∆Φj ] ≤ |Kj ∩ Sj | · (2d + T ) · π0 − |Lj ∩ Sj | · h0 · π0683

◀684
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We now analyze the amortized cost of ALG for a single access request event i.e., access cost685

plus the total amortized reconfiguration cost over the recursive calls of MMRF procedure.686

▶ Lemma D.3. The amortized cost of serving a request σt by ALG is k ·(1+π0 ·(2d+T ))+1.687

Proof. Recall from Equation 1 that the amortized cost of ALG in serving a request is688

the sum of access cost plus the amortized reconfiguration cost.689

From Lemma D.2, for each node rj , the cost of transpositions it participates in and690

the potential change due to its movements is at most |Kj ∩Sj | · (2d+T ) ·π0 −|Lj ∩Sj | ·h0 ·π0.691

In total, transpositions of nodes rj for 1 ≤ j ≤ δ account for all transpositions at time t,692

thus we sum over all the nodes rj to obtain the amortized reconfiguration cost of ALG.693

E[Cre(t) + ∆Φ] =
δ∑

j=1
E[Cj

re(t) + ∆Φj ] ≤ k · (2d + S) · π0 − l · h0 · π0694

The last inequality holds due to the following results from the initial work on the list update695

problem with precedence constraints [18].696

(1)
∑δ

j=1 |Kj ∩ Sj | ≤ k,697

(2)
∑δ

j=1 |Lj ∩ Sj | ≥ ℓ.698

We bound the access cost of ALG by Cacc(t) ≤ k + ℓ + 1. Finally, from Equation 1 and699

using the result from Lemma D.2, we obtain the amortized cost of ALG in serving a request,700

E[a(t)] ≤
access cost︷ ︸︸ ︷
(k + l + 1) +

amortized reconfiguration cost︷ ︸︸ ︷
(k · (2d + S) · π0 − l · h0 · π0) ≤ k · (1 + π0 · (2d + T )) + 1701

The last inequality holds since π0 · h0 = 1 from Kac’s Lemma [9, 11].702

◀703

D.1.2 Bounding the Competitive Ratio704

Events. We distinguish between the following types of events that occur throughout the705

algorithm’s execution:706

– Event-1: An access request event where both ALG and OPT serve the request and707

includes any paid transpositions made by ALG. We assume a fixed configuration of OPT708

throughout this event.709

– Event-2: A paid exchange event of OPT, a single paid transposition performed by OPT,710

where it either creates or destroys a single inversion with respect to the node σt. We711

assume a fixed configuration of ALG throughout this event.712

Proof. Consider any sequence of access requests σ. In order to prove our claim, it suffices713

to show that the expected amortized cost of MMRF in serving a request at any time t is714

E[a(t)] ≤ C · COPT, where C = max{1 + π0 · (2d + T ), 1 + T
d }.715

– Event-1: We use the result from Lemma D.3 to bound the amortized cost716

E[Cacc(t) + Cre(t) + ∆Φ] ≤ k · (1 + π0 · (2d + T )) + 1 ≤ k · (1 + π0 · (2d + T )) · COPT,717

where the last inequality holds as OPT pays at least k + 1 for serving the access request718

at time t.719
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– Event-2: OPT pays d for any paid transposition and at most one new inversion is720

created. The created inversion is either a hidden or visible. If the created inversion is721

a hidden inversion then the change in potential is d + T = d · (1 + T
d ). If the created722

inversion is visible, using the state independence from Observation 4.3, the created visible723

inversion is of type i with probability πi. Hence the expected change in potential is724

∆Φ ≤
∑s−1

i=0 (d + hi) · πi ≤ d + T ≤ d · (1 + T
d ).725

From Event-1 and Event-2, the expected amortized cost of MMRF is bounded by max{1 +726

π0 · (2d + T ), 1 + T
d } · COP T which concludes the proof.727

◀728

D.2 Proofs from Section 5729

▶ Lemma 5.2. The cost of reconfiguring list L2 to list L1 (that share the same dependency730

graph) using paid exchanges is d times the number of inversions between L1 and L2.731

Proof. We prove by induction on the number of nodes. In the base case, there exists a single732

node in both lists L1 and L2, the lists are the same, and the number of inversions is zero.733

Now consider node v as the node in front of the list L1. As the first node in the list, it is734

not dependent on any other node. Since L1 and L2 share the same dependency graph, v can735

move in front of L2 as well, without violating any precedence constraints. The inversions736

that v participate in are with all nodes in front of v in L2. Hence, the number of inversions737

multiplied by d is the same as the cost of moving v in front of L2. We remove node v in both738

lists, ending with lists with decreased size.739

From the induction hypothesis, we can assume that the cost of transforming lists with740

smaller sizes is d times the number of inversions between them. Therefore, the total cost of741

reconfiguring L2 to L1 would be d times the number of inversions between them. ◀742

▶ Theorem 5.3. There exists an optimal offline algorithm for list access with precedence743

constraints that only performs subset transfers.744

Proof. Assume Ei to be a sequence of paid exchanges by an optimal algorithm before the745

access request i, and after accessing the previous request.Also, define the sequence of all paid746

exchanges by the optimal algorithm as E = ⟨E1, . . . , Em⟩.747

Based on E, we construct E′ = ⟨E′
1, . . . , E′

m⟩, such that each sequence of paid exchanges748

only includes subset transfer. We name the initial list of nodes before any paid exchanges749

as L0. Consider L1 to be the list after applying exchanges in E1 (and L′
1 the list after E′

1).750

Let set BB be the nodes before the position of the first requested node, pos(σ1), in751

both L0 and L1. Similarly, define set BA as the nodes before pos(σ1) in L0 but after pos(σ1)752

in L1, and the set AB as the nodes after pos(σ1) in L0 but before pos(σ1) in L1. Then,753

we consider the sequence E′
1 to be the subset transfer on all nodes in the set BA. Such a754

subset transfer is possible since all the nodes that move after σ1 during E1 should not have755

a dependency relation with σ1. Furthermore, performing the subset set transfer from the756

nearest node to σ1 keeps the order among nodes in BA.757

Consider E′′
1 to be the minimum number of paid exchanges for transforming L′

1 into L1.758

If we show that |E1| ≥ |E′
1| + |E′′

1 |, then we replace the E with ⟨E′
1, E′′

1 ∪ E2, . . . , Em > that759

costs less than E and has one more subset transfer operation. Repeating the procedure760

described until this point on ⟨E′′
1 ∪ E2, . . . , Em⟩, will transfer E to E′ (that only consists of761

subset transfers).762

Now we prove |E1| ≥ |E′
1| + |E′′

1 |. Using Lemma 5.2, we know that the minimum number763

of paid exchanges for reconfiguring a list to another is d times the number of inversions764
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between the two lists. Therefore, we have |E1| ≥ d · |inv(L0, L1)|. On the other hand,765

inv(L0, L′
1) and inv(L′

1, L1) are disjoint and each represent |E′
1| and |E′′

1 |. That is because766

all in inversions in inv(L0, L′
1) are between nodes in BA and σt or nodes in BB, but none of767

these inversions appear in inv(L′
1, L1), as nodes in BA are already moved after σt.768

So we have |E′
1| + |E′′

1 | = d · (|inv(L0, L′
1)| + |inv(L′

1, L1)|) = d · |inv(L0, L1)|. Considering769

the fact that the cost of the initial sequence of paid exchanges is higher than d · |inv(L0, L1)|,770

we end up |E1| > |E′
1| + |E′′

1 |. ◀771
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