
University of Wroc law

PhD Thesis

Algorithmic aspects of contemporary

networks

Maciej Pacut

supervised by

Dr hab. Marcin Bieńkowski

November 2018

Contents

1 Introduction 5

1.1 Machine Virtualization in Data Centers . 6

1.1.1 Machine Migration . 7

1.1.2 Virtual Network Embedding . 7

1.1.3 Our Contributions . 8

1.1.4 Related Work . 11

1.2 Router Memory Optimization . 12

1.2.1 Forwarding Tables . 12

1.2.2 Growth of the Internet . 12

1.2.3 Our Contributions . 13

1.2.4 Related Work . 14

1.3 Bibliographic notes and acknowledgements . 15

I Mapping Virtual Networks 17

2 Virtual Networks with Static Topology 19

2.1 Problem Definition . 19

2.1.1 Optimization Objective . 20

2.1.2 Problem Decomposition . 20

2.2 Polynomial-Time Algorithms . 21

2.2.1 Flow Algorithms . 22

2.2.2 Matching Algorithms . 24

2.2.3 Dynamic Programming . 28

2.2.4 Simple Problems . 30

2.3 NP-Hardness Results . 30

2.3.1 Introduction to 3D Perfect Matching . 31

2.3.2 Hardness of Multi-Assignments . 31

2.3.3 Hardness of Inter-connects . 33

2.4 A Detailed Study of Replica Selection Hardness 34

2.4.1 Two Replicas without Bandwidth Constraints 35

2.4.2 Two replicas without Multiple Assignment 40

2.5 Conclusions . 46

3

4 CONTENTS

3 Virtual Networks with Dynamic Topology 47

3.1 Problem Definition . 47

3.2 A Simple Upper Bound . 48

3.3 Algorithm Crep . 49

3.3.1 Algorithm Definition . 49

3.3.2 Analysis: Structural Properties . 51

3.3.3 Analysis: Lower Bound on OPT . 52

3.3.4 Analysis: Upper Bound on CREP . 54

3.3.5 Analysis: Competitive Ratio . 56

3.4 Online Rematching . 57

3.4.1 Greedy Algorithm . 58

3.4.2 Analysis . 58

3.5 Lower Bounds . 61

3.5.1 Lower Bound by Reduction to Online Paging 61

3.5.2 Additional Lower Bounds . 63

3.6 Conclusions . 64

II Managing Resources in Routers 65

4 Caching of Routing Tables 67

4.1 Problem Definition . 69

4.2 Algorithm . 70

4.3 Analysis of TC . 70

4.3.1 Event Space and Fields . 71

4.3.2 Shifting Requests . 72

4.3.3 Competitive Ratio . 77

4.4 No over-requested changesets . 78

4.5 Implementation of TC . 79

4.5.1 Positive Requests and Fetches . 80

4.5.2 Negative Requests and Evictions . 80

4.6 Cache Updates with Fixed Cost . 82

4.7 Lower Bound on the Competitive Ratio . 82

4.8 Conclusions . 83

Chapter 1

Introduction

In the last decades, we witnessed a growing demand for performing large-scale computations,

such as protein folding, fluid dynamics, weather and market prediction, or production process

optimization. The scale of such computations exceeds abilities of a single computer, hence

they need to be performed on large sets of machines that cooperate over an interconnecting

network, collectively called the computer cluster. Owning and maintaing such large-scale com-

puting infrastructure is often impractical and expensive, and parties look for alternative ways

to perform computations. In comparison, outsourcing computations provides a wide range of

benefits. First of all, it mitigates the costs of infrastructure management and maintenance.

This is crucial especially for computational tasks that arise occasionally, such as high-quality

rendering, computer verification of products with long development time or analysis of human-

harvested data. Second, such approach dismisses the need to foresee the appropriate demand

for resources. If such demand increases unexpectedly, it can be immediately provided without

physical extension of the infrastructure. This led to a shift of computations to large-scale re-

mote facilites that contain computer clusters with their support infrastructure, the so-called

data centers. Performing computations in these external data centers provides the impression

of unlimited computational power on demand, and is called the cloud computing.

The demand for outsourcing computations to the cloud created a whole market for such

services. Modern suppliers of processing power such as Microsoft Azure [AZU], Amazon Elastic

Cloud Computing EC2 [AWS] or Google Compute Engine [GCE] provide convenient on-demand

computational power while hiding most of details concerning resource management. Processing

capabilities are quickly and conveniently accessible to every interested party.

Computational tasks require multiple types of resources to complete: CPU time, memory,

I/O operations and network bandwith. Often the demand for these resources varies in time

and is unpredictable. For this reason, a data center that performs just one task at the time

would waste resources. In contrast, the co-existence of multiple tasks in the data center allows to

compensate for the variable demand for resources by resource-aware scheduling. Such techniques

are especially useful in (but not limited to) computationally-intensive applications, where the

response time is not the primary concern.

The first part of this thesis assumes the perspective of a data center owner, who wants to

use owned resources in efficient manner. For example, processing speed can be scaled down to

5

6 CHAPTER 1. INTRODUCTION

save energy, memory can be shared or distributed, and cooperating processes can be migrated

closer to each other in the network to save bandwidth. In the first part of this thesis, we focus

on the last aspect and we show how it leads to efficient usage of an interconnecting network

in a data center. Optimization of this resource is critical for performing efficient large-scale

computations, as those involve multiple machines that cooperate over network. To this end, we

will make use of a sophisticated control system, called virtualization.

In the second part of this thesis, we shift our attention away from the optimization of data

center network and focus on fundamental aspects of data transmission in the modern Internet.

The transmitted data is split into portions called packets, which are sent independently, and

the task of relying a packet to its destination, called packet forwarding, is performed by network

devices called routers. A single network is usually connected with multiple adjacent networks,

and at each intermediate network, a bordering router needs to determine the next router on the

way of the packet. To this end, such device directs packets based on the set of its forwarding

rules, each corresponding to some network. The number of forwarding rules stored in core

Internet routers is almost as numerous as the total number of networks, which leads to enormous

forwarding tables to manage. We investigate the increasingly common scenario, where the

number of rules exceeds the available memory capacity.

The second part of this thesis assumes the perspective of an Internet Service Provider (ISP)

that owns and maintains the connecting physical infrastructure, such as routers. Typically,

routers located near the core of the Internet, e.g. in top-tier networks owned by large ISP, store

a sizeable number of forwarding rules, and this number continues to grow with the size of the

Internet. As the size of forwarding tables grows, it inevitably exceeds the available memory of

the router. One of the goals of the ISP is to utilize existing devices in the most efficient way and

to delay the need for an upgrade. The obvious but expensive solution is to provide additional

memory for the device. We focus on an alternative approach, where the router continues to

operate with insufficient memory to store the whole forwarding table. In this approach, it is

important to preserve the correctness and efficiency of packet forwarding: both are crucial in

minimizing data transfer latency and maximizing the throughput.

1.1 Machine Virtualization in Data Centers

To use the data center’s interconnecting network efficiently, cooperating computational tasks

should be placed close to each other and close to the data they process. Algorithmic techniques

presented in the first part of this thesis rely upon logical isolation of a computation from the

physical machine that performs the computation. This gives a possibility to manage the physical

placement of a computation in a way that is transparent to the computation. A particular piece

of technology that provides the flexibility in placement of computations is virtualization.

Virtualization provides an abstraction layer, called the virtual machine, for the underlying

hardware of a computer system. Virtual machine mimics functionality of the physical hardware

so closely that it can be used as an environment for a complete operating system. Such operating

system, running on a virtual machine is called the guest operating system. It operates in additon

to the host operating system, which runs directly on the physical hardware. In a data center,

1.1. MACHINE VIRTUALIZATION IN DATA CENTERS 7

the main purpose of virtualization is to provide the complete and non-restricted environment

for the client that is isolated from the management software and other clients’ tasks. The guest

operating system is restricted to the virtualized environment: it has the perspective of housing

a whole computer system.

1.1.1 Machine Migration

Besides providing an abstraction layer, mature virtualization solutions suited for data centers

such as Xen [XEN], KVM [KVM], Hyper-V [HyV], VMware ESXi [VME], provide several control

features. In particular, absolute control over the underlying virtual hardware allows to suspend

and resume the execution of the guest operating system at will. Such functionality provides

building blocks for the feature of migration, which transfers the complete virtual machine to

a different physical machine. This is possible without shutting down the guest operating system,

and hence it provides a powerful resource-management tool that is transparent to clients.

Such mechanisms play an important role in load balancing in the data center and allow for

sophisticated optimizations such as reducing network distance between communicating virtual

machines. In this thesis, we focus on migration capabilities provided by modern virtualization

techologies used for efficient usage of important resource in the data center — the network

bandwidth. The problem central to the first part of this thesis is stated as follows:

How to assign virtual machines to physical machines to optimize network usage?

We elaborate more in the subsequent subsection.

1.1.2 Virtual Network Embedding

The computing power of a single virtual machine is usually insufficient for the client, as the

resources of a virtual machine are limited by resources available to its host. Therefore, data

centers provide its resources as a sizeable set of virtual machines connected by a network. Col-

lectively, the virtual machines with their interconnecting network are called a virtual network,

where the cooperating virtual machines are refered to as nodes of a virtual network. To guar-

antee certain quality of service (QoS) for multitude of co-existing virtual networks, up-front

bandwidth reservations are required. However, the generality of performed calculations results

in unpredictibility of communication patterns and poses a challenge in optimization of band-

width reservations. In this thesis, we provide algorithms for efficient management of network

reservations without any assumptions about communication patterns.

To measure the quality of resource management strategy, in Part I we state formal opti-

mization problems; for now, we only briefly sketch it. Physical components of a data center

are modelled as a graph called a substrate network, in which vertices correspond to physical

machines, and edges correspond to an interconnecting network. A communication cost between

a pair of physical machines is proportional to edge-distance in substrate network (the number of

hops in the substrate network). A communication pattern among virtual machines is also mod-

elled as a graph, called a communication graph. In such settings, the communication among

virtual machines running on certain physical machines can be viewed as a graph embedding

8 CHAPTER 1. INTRODUCTION

Figure 1.1: The model of typical data center with a tree-like network topology. We distinguish two types of

tree nodes: the the intermediate nodes that transmit communication, and the computing machines, located at

the leaves of a tree. Network links between nodes are depicted as solid lines.

of communication graph into a substrate network [GKK+01]. The main objective is to find

an embedding that locates closely the virtual machines that communicate often.

In this thesis, we study substrate networks in form of a tree, which closely models the

popular Fat-Tree topology [Lei85]. In this tree topology, only leaves can host virtual machines,

and the sole role of intermediate tree nodes is to transmit data between leaves, see Figure 1.1.

1.1.3 Our Contributions

We consider two scenarios regarding virtual network embeddings:

1. The static scenario, where virtual machines are irrevocably assigned to their physical

machines.

2. The dynamic scenario, where virtual machines can migrate between physical machines.

We investigate the static scenario in Chapter 2 and the dynamic scenario in Chapter 3.

Although the problems are related by their practical motivations, their combinatorial structure

differs substantially. In particular, the static scenario is not an offline version of the problem

considered in the dynamic one. In both cases, we assume that the communication pattern

among virtual nodes is not known in advance. In the static scenario we reserve a portion

of a bandwidth between every pair of virtual nodes to allow for any possible communication

pattern. On the other hand, in the dynamic scenario we react to changes in the communication

pattern by migrating machines on the fly. In addition, the problem considered in the static

scenario is enriched by certain important properties of batch-processing applications that use

distributed file systems.

Static Mapping of Virtual Networks

In the static scenario studied in Chapter 2, to guarantee certain quality of service (QoS), we

need to acquire network reservations for all pairs of cooperating virtual machines. The combina-

torial problem that we consider in the static scenario is essentially a variant of the minimum-cost

1.1. MACHINE VIRTUALIZATION IN DATA CENTERS 9

embedding of a clique (the communication graph) in a tree (the substrate network). In addition,

the scenario is designed to model certain aspects of MapReduce [DG04], which is a predominant

framework for performing large-scale parallel data processing. We consider the wide range of

possible extensions that model certain aspects of Map-Reduce applications, most notably:

• Data chunk processing. In Map-Reduce applications, virtual machines process large amo-

unts of data chunks that are stored in a distributed file system. Each chunk of data must

be assigned and transferred to a virtual machine. Data chunk transfer requires its own

network reservations.

• Data chunk replication. Distributed file systems often store redundant copies of data

chunks, called chunk replicas. Only one copy of each data chunk replica must be processed,

and we are free to choose the replica to be used based on its placement.

• Bandwidth constraints. Each link in substrate network has its capacity. For the embedding

to be feasible, the total network reservations have to obey link capacities.

We decompose the general optimization problem into its fundamental aspects, such as assign-

ment of chunks, replica selection, and flexible virtual machine placement, and answer questions

such as:

• Which chunks to assign to which virtual machine?

• How to exploit redundancy and select good replicas?

• How to efficiently embed virtual machines and their inter-connecting network?

We draw a complete picture of the problem space: we show that some problem variants (also

those exhibiting multiple degrees of freedom in terms of replica selection and embedding), can

be solved in polynomial time. For all other variants, we prove limitations of their computational

tractability, by proving their NP-completeness. Interestingly, our hardness results also hold in

uncapacitated networks of small-diameter networks (as they are widely used today [ALV08]).

Dynamic Mapping of Virtual Networks

In Chapter 3, we study virtual network embeddings in the scenario where virtual machines

can be migrated during runtime to another physical machine. Possibility of migration provides

efficient tools that allow to react to unpredictible communication patterns. For example, if some

distant nodes communicate often, it is vital to reduce the distance to save network bandwidth.

The objective is to minimize the total network bandwidth used for communication and for

migration.

We assume that the communication patterns are not known in advance. We measure the

quality of presented algorithmic solutions by competitive analysis [BE98], which is well-suited

for problems that are online by their nature. In the competitive analysis, the goal is to optimize

the competitive ratio of a given online algorithm by comparing its performance to an optimal

offline algorithm that knows the whole input sequence in advance. To obtain the competitive

10 CHAPTER 1. INTRODUCTION

ratio for a minimization problem, we take the maximum (over all input sequences) of the cost

of an online algorithm divided by the cost of an offline algorithm.

In the dynamic scenario, we assume that the physical substrate network is a tree of height

one. That is, every physical machine (leaf) is connected directly to the root (that has no vir-

tual machine hosting capabilities). A single physical machine hosts a fixed number of virtual

machines. The model restricted to such networks becomes a variant of online graph clustering.

That is, we are given a set of n nodes (virtual machines) with time-varying pairwise communica-

tion patterns, which have to be partitioned into ` clusters (physical machines) each of capacity

k = n/`.

Intuitively, we would like to minimize inter-cluster interactions by mapping frequently com-

municating nodes to the same cluster. Since communication patterns change over time, the

nodes should be repartitioned, in an online manner, by migrating them between clusters. The

objective is to minimize the weighted sum of inter-cluster communication and repartition costs.

The former is defined as the number of communication requests between nodes placed in distinct

clusters, and the latter as the number of migrations between clusters. another.

The possibility to perform a migration uncovers algorithmic challenges:

• Serve remotely or migrate? For a brief communication pattern, it may not be worth-

while to collocate the nodes: the migration cost might be too large in comparison to

communication costs.

• Where to migrate, and what? If an algorithm decides to collocate nodes x and y, the

question becomes how. Should x be migrated to the cluster holding y, y to the one

holding x, or should both nodes be migrated to a new cluster?

• Which nodes to evict? There may not exist sufficient space in the desired destination

cluster. In this case, the algorithm needs to decide which nodes to “evict” (migrate to

other clusters), to free up space.

In the model described above, every physical machine fully utilizes its processing capabilities

— it hosts maximum possible number of virtual machines, i.e. k = n/`. Hence, the migration is

not possible without further reconfigurations: to respect physical machine capacity, we need to

decide which virtual machines to swap. For this setting, we show a deterministic lower bound

of k, where k is the physical machines hosting capacity. We present constant-competitive

algorithm for the scenario restricted to physical machines that can host two virtual machines

(k = 2).

In Chapter 3, we also consider the resource-augmented scenario, where we relax the above

assumption: now the total hosting capacity of physical machines exceeds the total number of

virtual machines, i.e. k > n/`. Surprisingly, the lower bound remains k also in this setting.

The main contribution of this part is an O(k · log k)-competitive algorithm for the scenario with

a small resource augmentation.

1.1. MACHINE VIRTUALIZATION IN DATA CENTERS 11

1.1.4 Related Work

Recently, there has been much interest in programming models and distributed system

architectures for processing and analysis of big data (see, e.g., [DG04, ABB+12, XRZ+13]).

Such applications generate large amounts of network traffic [CZM+11, MP12, MEC], and

over the last years, several systems have been proposed which provide a provable network

performance. To guarantee a certain performance level, we reserve a portion of a band-

width among cooperating nodes. We distinguish between two major approaches to bandwidth

reservations. Relative reservations [PKC+12, PYB+13, SKGK10] depend on supplying the

volume of bandwidth communication between each pair of nodes, while in absolute reserva-

tions [BCKR11, GLW+10, RVR+07, RST+11, XDHK12] we guarantee sufficient bandwidth for

any communication pattern by acquiring sufficient bandwidth among all nodes. In this thesis

we research both approaches: in Chapter 2 we study absolute reservations, and in Chapter 3

we study relative reservations.

In Chapter 2, we study virtual network embeddings. The most popular virtual network

abstraction for batch-processing applications [DG04] today is the virtual cluster [BCKR11],

later studied by many others [MP12, FSSC16, RFS15, XDHK12]. The virtual network embed-

ding problem is related to classic VPN graph embedding problems [EGOS05, GKR03, GOS08,

GKK+01]. The VPN problem is NP-hard, and is constant-factor approximable even for as-

symmetric traffic demands [FOST10]. The VPN problem requires finding a graph embedding

with fixed endpoints, while in virtual network embedding problems studied in this thesis, the

embedding endpoints are subject to optimization. In this respect, the virtual network em-

bedding problem can also be seen as related to classic Minimum Linear Arrangement prob-

lem [ENRS99, RR04] which asks for the embedding of guest graphs on a simple line topology

(rather than tree-like topologies as studied in this thesis).

We consider a variant of virtual network embedding enriched by motivations that follow

from batch-processing applications. Existing virtual cluster embedding algorithms often ignore

a crucial dimension of the problem, namely data locality: an input to a batch-processing ap-

plication such as MapReduce is typically stored in a distributed, and sometimes redundant, file

system. Since moving data is costly, an embedding algorithm should be data locality aware, and

allocate computational resources close to the data; in case of redundant storage, the algorithm

should also optimize the replica selection. Note that our variant is not strictly a generalization

of a virtual network embedding, as we took simplifing assumptions about the traffic demands.

In Chapter 3, we study an online balanced partition problem. The static offline version

of the problem, i.e., a problem variant where migration is not allowed, where all requests are

known in advance, and where the goal is to find best node assignment to ` clusters, is known

as the `-balanced graph partitioning problem. The problem is NP-complete, and cannot even be

approximated within any finite factor unless P = NP [AR06]. The static variant where ` = 2

corresponds to the minimum bisection problem, which is already NP-hard [GJS76], and the

currently best approximation ratio is O(log n) [SV95, AKK99, FKN00, FK02, KF06, Räc08].

The inaproximability of the static variant for general values of ` motivated research on the

bicriteria variant, which can be seen as the offline counterpart of our cluster-size augmentation

12 CHAPTER 1. INTRODUCTION

approach. Here, the goal is to develop (`, δ)-balanced graph partitioning, where the graph has to

be partitioned into ` components of size less than δ ·(n/`) and the cost of the cut is compared to

the optimal (non-augmented) solution where all components are of size at most k. The variant

where δ ≥ 2 was considered in [LMT90, ST97, ENRS00, ENRS99, KNS09]. So far, the best

result is an O(
√

log n · log `)-approximation by Krauthgamer et al. [KNS09].

Our model is related to online paging [ST85a, FKL+91, MS91, ACN00], sometimes also

referred to as online caching, where requests for data items (nodes) arrive over time and need

to be served from a cache of finite capacity, and where the number of cache misses must be

minimized. Classic problem variants usually boil down to finding a smart eviction strategy,

such as Least Recently Used (LRU) [ST85b]. In our setting, requests can be served remotely

(i.e., without fetching the corresponding nodes to a single cluster). In this light, our model is

more reminiscent of caching models with bypassing [EILNG11, EILN15, Ira02]. As a side result,

we show that our problem is capable of emulating online paging. There is a major difference

between the caching problems and online partition problems. In the caching problem, the

request relate to a sigle element of the universe. In contrast, in our model, both end-points of

a communication request are subject to optimization.

1.2 Router Memory Optimization

In the second part of this thesis, we consider the fundamental problem of packet forwarding.

We focus on a single router, that physically connects different networks and is responsible

for passing packets between them. Upon receiving a data packet, the router forwards it to

a specific output port leading to a neighbouring network. To choose the appropriate port, the

router stores of a forwarding table, which consists of rules describing how to map the packet

destination addresses to appropriate ports. Typically, a router stores a single rule for each

network it knows about.

1.2.1 Forwarding Tables

The router maintains the forwarding table in its memory. Only a small restricted set of

operations is performed on such memory: lookups and updates. Nowadays, routers perform

milions of lookup operations and thousands updates (see, e.g., a report [BUP]), and use special-

ized hardware for the efficiency. Hence, instead of using the general-purpose memory such as

RAM, the specialized memory units such as TCAM [PS06] are utilized. The TCAM memory is

an associative memory storage that enables hardware supported pattern-matching lookup that

closely matches the way the forwarding rules are used.

1.2.2 Growth of the Internet

Certain routers are located near the core of the Internet, and forward packets among large

number of networks and have the knowledge about virtually all Internet networks. Their for-

warding tables are usually refered to as global forwarding table. In Figure 1.2, we see the growth

of the number of entries in the global forwarding table [BGP]. Therefore, those routers have to

1.2. ROUTER MEMORY OPTIMIZATION 13

store an enormous number of forwarding rules: the number of rules has doubled in the last six

years [BRV] and the superlinear growth is likely to be sustained [CMU+10]. It is worth noting

that some of these networks are virtual. The concept of virtual networks described in Part I

contributed significantly to partitioning of the Internet into subnetworks, and to further growth

of forwarding tables.

In the last years, the size of forwarding table started to exceed the amount of available

TCAM memory in a typical router (the phenomenon called the TCAM exhaustion [EXH]).

Sophisticated electronics circuits such as TCAM are very expensive and power-hungry in com-

parison to RAM [STT03]. Moreover, typical operations performed on TCAM memory examine

the whole contents stored in memory, which requires closely connected physical structure among

memory cells — as the result, it is expensive to expand available memory.

Limited size of memory and expanding size of the content to store brings new challenges in

memory management of the routers. In Chapter 4, we investigate the following problem, using

the tools provided by contemporary routers:

How to efficiently manage the memory of forwarding devices?

Figure 1.2: The number of entries in the global forwarding table. The global forwarding table is built upon the

informations exchanged via Border Gateway Protocol. The graph presents the growth of the global forwarding

table from 1988 to 2018.

1.2.3 Our Contributions

In Chapter 4, we study a novel solution for management of growing set of forwarding rules.

This approach could delay the need for expensive or impossible memory upgrades in routers,

is to store only a subset of rules in the actual router and store all rules on a secondary device

(for example a commodity server with a large but slow memory) [KARW16, KCGR09, Liu01,

LLW15, SUF+12]. We propose a theoretical model for studying algorithmic solutions for such

setting. We provide a natural online algorithm that dynamically manages the set of forwarding

14 CHAPTER 1. INTRODUCTION

rules. Our algorithm, when applied in the context of such architectures, can be used to prolong

the lifetime of IP routers.

Although this setting resemble the caching problem, the hierarchical structure of forwarding

rules enforces some restrictions of cache configuration feasibility. Forwarding rules form a tree,

and the child rule describes the exception to the parent rule. To model this issue, we introduce

a variant of caching problem, where the universe of elements (forwarding rules) form a tree. The

child-parent relations express dependencies between cached elements: to preserve the semantics

of the forwarding rules set, no parent rule can be in cache without its child rules. In other

words, every valid cache configuration is a subforest. We elaborate more in Chapter 4.

We present a deterministic online algorithm for cache management with hierarchical depen-

dencies. We prove that the algorithm is O(h(T) ·k)-competitive, where h(T) is the height of the

forwarding rules tree (the maximum nesting in the forwarding table), and k is the size of avail-

able cache. Our result is optimal up to the factor O(h(T)): we show that the lower bound for the

paging problem [ST85b] implies an Ω(k) lower bound for our problem. In addition, we consider

the online tree caching problem within the resource augmentation paradigm: we assume that

cache sizes of the online algorithm (kONL) and the optimal offline algorithm (kOPT) may differ.

For this setting we show that our algorithm is O(h(T) · kONL/(kONL − kOPT + 1))-competitive.

The performance of the algorithm is not degraded if the model is enhanced to handle rule

updates, that is an important aspect of router operation. Whenever the particular rule is

updated, the algorithm incurs the cost if the rule is present in cache. Finally, we show that

Alg can be implemented efficiently.

1.2.4 Related Work

So far, the papers on IP rule caching avoided dependencies either assuming that rules do not

overlap (a tree has a single level) [KCGR09] or by preprocessing the forwarding table, so that the

rules become non-overlapping [Liu01, LLW15]. Unfortunately, this could lead to a large infla-

tion of the routing table. A notable exception is a recent solution called CacheFlow [KARW16].

The CacheFlow model supports dependencies even in the form of directed acyclic graphs. How-

ever, CacheFlow was evaluated only experimentally, and no worst-case guarantees were given

on the overall cost of caching. Our work provides theoretical foundations for respecting tree

dependencies.

Other approaches for minimizing the number of stored rules were mostly based on rules

compression (aggregation), where the set of rules was replaced by another equivalent and

smaller set. Optimal aggregation of a fixed routing table can be achieved by dynamic pro-

gramming [DKVZ99, SSW03], but the main challenge lies in balancing the achieved compres-

sion and the amount of changes to the routing table in the presence of updates to this table.

While many practical heuristics have been devised by the networking community for this prob-

lem [KCR+12, LZW13, LZN+10, LXS+13, RTK+13, UNT+11, ZLWZ10], worst-case analyses

were presented only for some restricted scenarios [BSSU14, BS13]. Combining rules compression

and rules caching is so far an unexplored area.

1.3. BIBLIOGRAPHIC NOTES AND ACKNOWLEDGEMENTS 15

1.3 Bibliographic notes and acknowledgements

The results of this thesis were published by the author of this thesis in various conferences

and journals. Parts of Chapter 2 appeared previously in the proceedings of 23rd IEEE Interna-

tional Conference on Network Protocols (ICNP 2015) [FPCS15], and in Theoretical Computer

Science, vol. 697 [FPS17]. Some of the results from Chapter 2 appeared in the PhD thesis

of my co-author Carlo Fuerst. Parts of Chapter 3 appeared previously in the proceedings of

30th International Symposium on Distributed Computing (DISC 2016) [ALPS16], and parts of

Chapter 4 — in the proceedings of 29th ACM Symposium on Parallelism in Algorithmics and

Architectures (ACM SPAA 2017) [BMP+17]. Preliminary results from Chapter 4 appeared in

the master thesis of my co-author Aleksandra Spyra.

For some figures in this thesis, icons by Smashicons from www.flaticons.com were used.

16 CHAPTER 1. INTRODUCTION

Part I

Mapping Virtual Networks

17

Chapter 2

Virtual Networks with Static

Topology

2.1 Problem Definition

As described informally in the introduction, the model combines three components: (1) the

substrate network (the servers and the connecting physical network), (2) the input which needs

to be processed (divided into data chunks), and (3) the virtual network (the virtual machines

and the logical network connecting the machines to each other as well as to the chunks).

The Substrate Network. The substrate network (also known as the host graph) represents

the physical resources: a set S of nS = |S| servers interconnected by a network consisting of

a set R of routers (or switches) and a set E of (symmetric) links; we will often refer to the

elements in S ∪ R as the vertices. We will assume that the inter-connecting network forms

an (arbitrary, not necessarily balanced or regular) tree, where the servers are located at the

tree leaves. Each server s ∈ S can host a certain number of virtual machines (available server

capacity cap(s)), and each link e ∈ E has a certain bandwidth capacity cap(e).

The Input Data. The to be processed data constitutes the input to the batch-processing

application. The data is stored in a distributed manner; this spatial distribution is given and

not subject to optimization. The input data consists of τ different chunk types {c1, . . . , cτ},
where each chunk type ci can have ri ≥ 1 instances (or replicas) {c(1)

i , . . . , c
(ri)
i }, stored at

different servers. A single server may host multiple chunks. It is sufficient to process one

replica, and we will sometimes refer to this replica as the active (or selected) replica.

The Virtual Network. The virtual network consists of a set V of nV = |V | virtual machines,

henceforth often simply called nodes. Each node v ∈ V can be placed (or, synonymously,

embedded) on a server; this placement can be subject to optimization.

Depending on the available capacity cap(s) of server s, multiple nodes may be hosted on s.

We will denote the server s hosting node v by π(v) = s. Since these nodes process the input

data, they need to be assigned and connected to the chunks. Concretely, for each chunk type ci,

exactly one replica c
(j)
i must be processed by exactly one node v; which replica c

(k)
i is chosen is

subject to optimization, and we will denote by µ the assignment of nodes to chunks.

19

20 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

c3 c2c4 c2c1c1 c3

c4
v2v1

Figure 2.1: Overview: a 9-server datacenter storing τ = 4 different chunk types {c1, . . . , c4} (depicted as

circles). The chunk replicas need to be selected and assigned to the two virtual machines v1 and v2; the virtual

machines are depicted as squares, and the network connecting them to chunks (at bandwidth b1) is dashed. In

addition, the virtual machines are inter-connected among each other at bandwidth b2 (dotted). The objective of

the embedding algorithm is to minimize the overall bandwidth allocation (sum of dashed and dotted lines).

In order to ensure a predictable application performance, both the connection to the chunks

as well as the interconnection between the nodes may have to ensure certain minimal bandwidth

guarantees; we will refer to the first type of virtual network as the (chunk) access network, and

to the second type of virtual network as the (node) inter-connect ; the latter is modeled as

a complete network (a clique). Concretely, we assume that an active chunk is connected to its

node at a minimal (guaranteed) bandwidth b1, and a node is connected to any other node at

minimal (guaranteed) bandwidth b2. Figure 2.1 gives an overview of our model.

2.1.1 Optimization Objective

Our goal is to develop algorithms which accept and embed a request whenever this is possible,

and minimize the resource footprint : the amount of resources which have to be dedicated to

a request, in order to realize its guarantees. Essentially, the footprint captures the overall

resource allocation, and is the most common objective function considered in the literature

(a.k.a. as the min-sum objective guarantee) [FBB+13].

Formally, let dist(v, c) denote the distance (in the underlying physical network T) between

a node v and its assigned (active) chunk replica c, and let dist(v1, v2) denote the distance

between the two nodes v1 and v2. We define the footprint F(v) of a node v as follows:

F(v) =
∑
c∈µ(v)

b1 · dist(v, c) +
1

2
·
∑

v′∈V \{v}
b2 · dist(v, v′)

︸ ︷︷ ︸
only for inter-connect

,

where µ(v) is the set of chunks assigned to v. Our goal is to minimize the overall footprint

F =
∑

v∈V F(v).

2.1.2 Problem Decomposition

In order to chart the landscape of the computational tractability and intractability of differ-

ent problem variants, we decompose our problem into its fundamental aspects, namely replica

2.2. POLYNOMIAL-TIME ALGORITHMS 21

selection (RS), multiple chunk assignment (MA), flexible node placement (FP), node intercon-

nect (NI), and bandwidth constraints (BW), as described in the following. In this chapter, we

will consider all possible 32 problem variants, where each of these five aspects can either be

enabled or disabled.

Replica Selection (RS). The first fundamental problem is replica selection: if the input data

is stored redundantly, the algorithm has the freedom to choose a replica for each chunk type,

and assign it to a virtual machine (i.e., node). In the following, we will refer to a scenario with

redundant chunks by RS; in the RS-only scenario, the number of chunk types is equal to the

number of nodes. Otherwise, we will add the +MA property discussed next.

Multiple Assignment (MA). If the number of chunk types τ is larger than the number

of nodes, each node needs to be assigned multiple chunks. We will refer to such a scenario

by MA. Since all nodes are identical and no additional information regarding the chunks is

available at request time, we assume that each node will process an identical integer number of

chunks m = τ/nV .

Flexible Placement (FP). While the nodes are placed a priori in some cases, the node

placement (or synonymously: embedding) of nodes on physical servers can also be subject to

optimization. We will refer to this degree of freedom by FP.

Node Interconnect (NI). We distinguish between scenarios where bandwidth needs to be

reserved both from each node to its assigned chunks as well as to the other nodes (i.e., b1 > 0

and b2 > 0), and scenarios where only the (chunk) access network requires bandwidth reservation

(i.e., b1 > 0 and b2 = 0). We will refer to the former scenario where bandwidth needs to be

reserved also for the inter-connect, by NI. The node interconnect is modelled as a complete

graph, to account for the all to all communication patterns of batch processing applications

such as MapReduce.

Bandwidth Capacities (BW). We distinguish between an uncapacitated and a capacitated

scenario where the links of the substrate network come with bandwidth constraints, and will

refer to the bandwidth-constrained version by BW; the capacity of servers (the number of nodes

which can be hosted concurrently) is always limited. Note that capacity constraints introduce

infeasible problem instances, where it is impossible to allocate sufficient resources to satisfy an

embedding request.

2.2 Polynomial-Time Algorithms

Despite the various degrees of freedom in terms of embedding and replica selection, we can

solve many problem variants efficiently. This section introduces three general techniques, which

can roughly be categorized into flow (Section 2.2.1), matching (Section 2.2.2) and dynamic

programming (Section 2.2.3) approaches. First, let us make a simplifying observation:

Observation 1. In problems without flexible placement (FP), the bandwidth required for the

inter-connect network (NI) can be allocated upfront, as it does not depend on the replica selection

22 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

FP

BW

RS
MA

NI

Figure 2.2: Variants solved by flow approach.

and assignment. Accordingly, we can reduce problem variant RS + MA + NI + BW (as well as

all its subproblems) to RS + MA + BW (resp. its subproblems).

2.2.1 Flow Algorithms

We first present an algorithm to solve the RS + MA + NI + BW problem. Recall that

in this problem variant, we are given a set of redundant chunks (RS) and a set of nodes (the

nodes) at fixed locations (no FP). The number of chunk types is larger than the number of

nodes (MA), and each node needs to be connected to its selected chunks as well as to other

nodes (NI), while respecting capacity constraints (BW). Our goal is to minimize the resource

footprint F, consisting of the bandwidth reservations in the (chunk) access network and the

(node) inter-connect. As we will see in the following, we can use a flow approach to solve this

problem variant.

Construction of Artificial Graph. In order to solve the RS + MA + NI + BW problem,

we first remove the NI property using Observation 1. We then construct an artificial graph T ∗,

extending the substrate network T and normalizing bandwidth capacities, as follows. For T ∗,

we normalize the bandwidth of T to integer multiples of b1, i.e., for each link e ∈ E(T), we set

its new capacity in T ∗ to bcap(e)/b1c. After this normalization, we extend the topology T by

introducing an artificial vertex for each chunk type. These artificial vertices are connected to

each leaf (i.e., server) in T where a replica of the respective chunk type is located, connecting

the replica of the respective chunk type by a link of capacity 1. In addition, we create a super-

source s+, and connect it to each of the artificial chunk type vertices (with a link of capacity

1). Moreover, we create an artificial super-sink s− and connect it to every leaf containing at

least one node; the link capacity represents the number of nodes x hosted on this server, times

the multi-assignment factor m. We additionally assign the following costs to edges of T ∗: every

edge of the original substrate network costs one unit, and all other artificial edges cost nothing.

2.2. POLYNOMIAL-TIME ALGORITHMS 23

Figure 2.3: Example of flow construction: Problem instance with two nodes, four chunk types, and two replicas

per type. The min-cost-max-flow is indicated by the dashed lines: each line represents one unit of flow.

A solution to the RS+MA+BW problem can now be computed from a solution to the Min-

Cost-Max-Flow problem between super-source s+ and super-sink s− on the artificial graph T ∗.

Example. Figure 2.3 shows an example of the extended substrate network T ∗: The sink s− is

connected to the two leaves, which host the nodes. The artificial nodes are depicted below the

leaves, are labeled with their respective chunk types (e.g., c1), and are connected to the source

s+ as well as to the leaves which contain replicas of their chunk type. The maximum flow with

minimal costs is indicated by the dashed lines: each line represents one unit of flow. The dotted

lines indicate links which have reduced capacity due to NI.

Algorithm. Our algorithm to solve RS + MA + NI + BW consists of three parts: First,

we construct the normalized and extended graph T ∗ described above and compute a min-

cost-max-flow solution, e.g., using [GT89, Tar85]. Second, we have to round the resulting,

possibly fractional flow, to integer values. Due to the integrality theorem [AMO93], there always

exists an optimal integer solution on graphs with integer capacities. However, while algorithms

like the successive shortest path algorithm [KK12] directly give us such an integral solution

(in polynomial time), the fastest min-cost-max-flow algorithms (e.g., based on double-scaling

methods [GT89] or minimum mean-cost cycle algorithms [Tar85], may yield fractional solutions

which need to be rounded to integral solutions (of the same cost). In order to compute integral

solutions, we proceed as follows: we iteratively pick an arbitrary (loop-free) path currently

having a fractional allocation of value f (f > 0), and distribute its flow f among all other

fractional paths of the same length; due to the optimality of the fractional solution and due to

the integrality theorem, such paths must always exist. After distributing this flow, the total

allocation on this path will be 0, and we have increased the number of integer paths by at

least one. We proceed until we constructed the perfect matching. Third, given an integer

min-cost-max-flow solution, we need to decompose the integer flow into the paths representing

matched chunk-node pairs: The assignment can be obtained by decomposing the flow allocated

24 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

FP

MA
RS

NI

BW

Figure 2.4: Variants solved by matching approaches.

in the original substrate network. In order to identify a matched chunk-node pair, we take an

arbitrary (loop-free) path p carrying a flow of value ≥ 1 from s+ to s−: the first hop represents

the chosen chunk type, the second hop the chosen replica, and the last but one hop represents

the server: we will assign the replica to an arbitrary unused node on this server. Having found

this pair, we reduce the flow along the path p by one unit. We continue the pairing process

until every chunk type is assigned.

Analysis. The correctness of our approach follows from our construction of T ∗, using integer

capacities (in our case bcap(e)/b1c), and the fact that cost optimal integral solutions always

exist [AMO93]. The runtime of our algorithm consists of four parts: construction of T ∗, com-

putation of the min-cost-max-flow, flow rounding, and decomposition. The dominant term in

the asymptotic runtime is the flow computation. Using the state-of-the-art min-cost-max-flow

algorithms [GT89, Tar85] we get a runtime of O(n2
S · log log min{U, τ}) where U is the maximal

link capacity; note that in networks with high capacity and uncapacitated networks, we can

simply set U = τ .

2.2.2 Matching Algorithms

This section presents faster algorithms to solve the two problem variants RS + MA + NI

and MA + NI + BW which can also be solved with the flow approach introduced above. In

general, we refer to the algorithms presented in this section as matching approaches.

RS + MA + NI

Let us first consider the RS + MA + NI variant. Recall that in this problem, we are given

a set of redundant chunks (RS) and a set of nodes at fixed locations. The number of chunk types

is larger than the number of nodes (MA), and each node needs to be connected to its chunks

2.2. POLYNOMIAL-TIME ALGORITHMS 25

Figure 2.5: The RS + MA problem on the left is converted into a matching problem on the right. Since each

node has to process two chunks, the nodes are replicated in the matching representation. The two replicas of

each chunk type are represented by a single node, and all edges connecting to this node have a weight according

to the shorter distance to one of the replicas. This is visualized for c2.

as well as to other nodes (NI). Our goal is to minimize the resource footprint F, consisting of

the bandwidth reservations in the access network and the inter-connect.

Algorithm. Due to Observation 1, RS + MA + NI degenerates to RS + MA. In order to

solve the RS+MA problem variant, we construct a bipartite graph between the set V of nodes

and the set of chunks. Concretely, we clone each node m times, as each node needs to process

m chunk types, and we collect all copies of a given chunk type in a single “super-node”. We

connect each node to all chunk types using the lowest hop count to one of the copies as the cost

metric (the link weight). On the resulting bipartite graph, we can now compute a Minimum

Weight Perfect Matching [Gab85]: the resulting matching describes the optimal assignment of

chunks to nodes.

Example. Before analyzing our algorithm, let us consider a small example. Figure 2.5 illus-

trates an instance where two nodes are cloned into m = 2 nodes each, resulting in a total of

four nodes in the matching problem representation. The two replicas of each chunk type are

aggregated into a single chunk type vertex cj in the matching problem; this gives a total of

four chunk type vertices in the matching graph. The costs on the links between all clones of

a specific vertex and a chunk type are set to the minimum distance. We can observe this for

instance at the edges connecting the two clones of v1 to c2: both weights are 0.

Analysis. The correctness of our algorithm follows from the construction and the optimal

solution of the minimum matching. The runtime consists of two parts: the construction of

the matching graph and the actual matching computation. The constructed graph consists of

m ·nV · τ many edges, and for each edge we need to compute its cost, i.e., the shortest distance

which in a tree can be computed in time nS ; thus, the overall construction time is O(nS · τ2).

The state of the art algorithm to compute matchings are based on scaling techniques [DS12].

The runtime translates to O(τ5/2 · log(τ · nS)); recall that τ = m · nV .

26 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

Figure 2.6: Illustration of local assignment: The dashed lines indicate bandwidth allocations, which occur

independently of the chosen assignment. The dotted lines indicate bandwidth allocation which occur only if c2

is assigned to v1.

Faster MA + NI and MA + NI + BW

We now show that we can solve MA + NI even faster, by exploiting locality. Moreover,

we will show that we can even solve MA + NI + BW problem variants by simply verifying

feasibility. In the following, due to Observation 1, we can focus on the MA resp. MA + BW

problem.

We first introduce the following definition.

Definition 1 (Local Assignment (LA)). We define an assignment µ to be local in a specific

subtree T ′, iff µ assigns the maximum number of chunks in the subtree to nodes in the same

subtree. We define µ to be local when it is local with respect to all possible subtrees of the

substrate network.

Example. Figure 2.6 illustrates the concept of local assignment: The closest chunk to v2 is c1,

and the closest node to c1 is v2. However, a subtree T ′ exists such that v1 ∈ T ′ and c1 ∈ T ′,
but v2 /∈ T ′. Therefore, a local assignment cannot assign c1 to v2.

We will see later that optimal solutions to MA have a local assignment. We exploit this in

our algorithms described in the following.

Algorithm. Our proposed algorithm for MA proceeds in a bottom-up fashion, traversing the

substrate network T from the leaves toward the root. For each subtree T ′, we maintain two

sets S1, S2 in order to match unmatched chunks S1 in the subtree T ′ to unmatched nodes S2

in T ′. Both sets are initially empty.

We first process all the leaves, in an arbitrary order; subsequently, we process arbitrary inner

vertices of T , whenever all their children have been processed. We process any leaf ` by adding

any nodes or chunks which are located on ` to the corresponding sets S1 and S2. A non-leaf

2.2. POLYNOMIAL-TIME ALGORITHMS 27

vertex u is processed in the following way: we take the union of the sets of u’s children, i.e.,

the sets contain the unmatched chunks and nodes in this subtree. For both leaves and inner

nodes, whenever both sets are non-empty, we greedily match an arbitrary chunk in S1 with an

arbitrary node in S2, and remove them from the sets.

Analysis. On a given vertex u, emptying one of the sets, results in a local assignment (cf Def-

inition 1) in the subtree rooted at u. The bottom-up strategy ensures that this works for every

subtree in the substrate, rendering the resulting assignment local. The complexity of this con-

struction is low: For each vertex in the substrate graph, we build the union of the children’s

sets, and since each vertex can only be the child of one vertex, the amortized runtime per vertex

is constant; and hence the overall runtime O(nS). The sum of all remove operations, is equal

to the number of chunk types O(τ). Hence the overall complexity of this construction amounts

to O(nS + τ).

It remains to prove optimality of such local assignments. By uplink of a subtree with root

r we denote the edge from parent(r) to r (if it exists). We first characterize the bandwidth

allocation on uplinks of subtrees.

Lemma 1. Given an MA problem and a subtree T ′ containing x chunks and y nodes, the

minimal bandwidth allocation of any assignment µ on the uplink of T ′ is |x− y ·m| · b1.

Proof. In case the number of chunk types equals the processing capacities of the nodes in the

given subtree, the bandwidth allocation inflicted by the chunk access network on the uplink can

be zero, since we can assign all chunks to nodes in the same subtree. Otherwise, we distinguish

between two cases: Recall, that in instances without RS, all chunks have to be processed. In

case there are more chunks in the subtree, at least all of the excess chunks have to be transferred

to a different subtree, which will inflict costs b1 per excess chunk on the uplink connecting T ′

with the remaining parts of T , which will inflict costs b1 per excess chunk on the uplink of root

of T ′. Similarly, if the processing capabilities exceed the amount of available chunks, excess

chunks from other subtrees will have to be transferred to nodes in the subtree T ′, inflicting

bandwidth costs of b1 each. Hence, the minimum bandwidth allocation for the chunk access on

the uplink is the difference between the number of chunks and the processing capabilities of the

subtree |x− y ·m| times the amount of bandwidth needed, for a single transfer b1.

Theorem 1. Given an MA + NI problem instance, a feasible assignment µ is optimal iff it is

local.

Proof. Local assignments generate exactly the minimal allocations on all links, as the assign-

ments which generate the minimal bandwidth allocations described in the proof of Lemma 1

are local in the given subtree. Hence each local assignment has to be optimal. A non-local

assignment, has at least one subtree, in which it is not local. This subtree will have a higher

allocation on the uplink. Since the local assignment has minimal allocations on all other links,

the non local assignment has a larger footprint.

Combined with a simple postprocessing step, this approach can also solve MA + BW. The

central idea of this extension, is that local assignments allocate the minimal bandwidth on each

28 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

RS

FP
NI

MA

BW

Figure 2.7: Variants solved by dynamic programming approach.

individual edge. In consequence, each bandwidth constraint which is lower than the allocation

of a local assignment on one link, renders the problem infeasible. Hence, it is sufficient to tem-

porarily omit the bandwidth limitations, compute an optimal assignment for an MA instance,

and verify that the resulting allocations do not violate any capacities. The postprocessing step

scales linearly with the number of edges in the substrate graph.

2.2.3 Dynamic Programming

We now show how to solve the MA + FP + NI + BW problem variant in polynomial time.

Note that this problem variant requires to find a tradeoff between the desire to place nodes as

close as possible to each other (in order to minimize communication costs), and the desire to

place nodes as close as possible to the chunk locations.

Example. Figure 2.8 shows an example: one extreme solution is to minimize the distance

between chunks and nodes, see mapping π1 in Figure 2.8 (left): the four nodes are all collocated

with chunks, resulting in a zero-cost chunk access network. As a result, the paths between the

individual nodes are longer than in alternative node placements: each node has a distance of

two hops to one other node, and four hops to two other nodes. Hence the resulting allocations

for the node interconnect sum up to 20 · b2.

Figure 2.8 (right) shows a different node mapping π2, which seeks to minimize the commu-

nication costs between the nodes, and places all nodes in one subtree. The distance between

all nodes is two, which results in a total bandwidth allocation of 12 · b2 for the interconnect.

However, this reduced price comes at additional costs in the access network: c3 and c4 have to

be communicated to v3 and v4, which requires a total bandwidth allocation of 8 · b1.

Basic ideas. Our proposed approach is based on dynamic programming, and leverages the

optimal substructure property of MA + FP + NI + BW: as we will see, optimal solutions for

subproblems (namely subtrees) can efficiently be combined into optimal solutions for larger

2.2. POLYNOMIAL-TIME ALGORITHMS 29

Figure 2.8: Two different node placements for the same substrate graph and chunk locations. For b1 = b2, both

solutions have an identical footprint. In other cases, one solution outperforms the other.

problems. Indeed, the MA + FP + NI + BW problem exhibits such a structure, and we show

how to exploit it to compute efficient embeddings, even in scenarios where multiple chunks need

to be assigned to flexibly placeable nodes.

For ease of presentation we will transform the substrate network T into a binary tree, using

binarization: we clone every higher-degree node, iteratively attaching additional clones as right

children and original children as left descendants.

As usual in dynamic programs, we define, over the structure of the tree, a recursive formula f

for the minimal cost solution given any possible number of nodes embedded in a given subtree.

The actual set does not matter, due to symmetry arguments. Our approach is to evaluate this

function in a bottom-up manner. To finally compute the actual optimal embedding, we traverse

the computed minimal-cost path backwards (according to the optimal values found for f during

the bottom-up computation).

Concretely, the first argument to function f is a subtree T ′, containing a given number of

chunks y(T ′), and the second argument is the number of nodes to be embedded in the subtree.

Function f is evaluated in a bottom up manner. We initialize the function at each leaf `,

by f(T`, x) = ∞ for all numbers of nodes x which are larger than the server capacity cap(`);

to calculate f(T`, x), for x ≤ cap(`), we compute the bandwidth allocation on the uplink of T`,

referred to by the function bw(T`, x): bw(Tl, x) = b1 · |x − y(T`)|+ b2 · (nV − x) · x, which

accounts for the bandwidth allocation on the uplink of T`. The first term represents the required

bandwidth for the communication between the x nodes on `, and the nV − x nodes in the

remaining parts of the substrate network. The second term represents the bandwidth, which

is necessary to transport the chunks from their location to the node which should process the

data (see Lemma 1 for more details).

After initialization, we proceed to compute f for non-leaf nodes in a bottom-up manner:

We split the x nodes into two positive integer values, and we put r on the right and x−r on the

left subtree. That is, we take the optimal cost (given recursively) of placing r nodes in the right

subtree Ri(T ′) of T ′ and x−r nodes in left subtree Le(T ′) of T ′. Given the cheapest combination,

we add the bandwidth requirements on the uplink of T ′ to generate the overall costs for placing x

nodes in T ′. Therefore, f(T ′, x) = min0≤r≤x {f (Le(T ′), x− r) + f (Ri(T ′), r)} + bw(T ′, x).

Again, we set f(T ′, x) to infinity if the required bandwidth bw exceeds the capacity cap of the

uplink of T ′.

30 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

BW

MA
RS

FP
NI

Figure 2.9: Trivially solvable problem variants.

Analysis. The correctness and optimality of our dynamic program is due to the decoupling

of the costs induced by the tree structure of T and the substructure optimality property. The

substructure optimality follows from the observation that costs can be accounted on the uplink,

and the fact that we check each possible node distribution. For each substrate vertex (nS many)

we have to check the cost of all possible splits, resulting in an overall complexity of O(nS ·n2
V).

The runtime to binarize T is asymptotically negligible.

2.2.4 Simple Problems

For the sake of completeness, we also observe that there are several problems which allow

for a trivial solution. Concretely, problems with FP plus any combination of RS and BW (but

without MA and NI) can easily be solved by mapping nodes to chunk locations. Figure 2.9

shows a Venn diagram of the trivial property combinations.

2.3 NP-Hardness Results

We have seen that even problems with multiple dimensions of flexibility can be solved

optimally in polynomial time. This section now points out fundamental limitations in terms

of computational tractability. In particular, we will show that problems become NP-hard if

flexibly placeable nodes (FP) have to be assigned to one of multiple replicas (RS), either with

multiple chunks per node (MA in Section 2.3.2) or with communication among nodes (NI in

Section 2.3.3). Both results hold even in uncapacitated networks, and even in small-diameter

substrate networks (namely two- or three-level trees [ALV08]). The hardness of FP+RS+MA

and FP + RS + NI imply the hardness of four additional, more general models, as summarized

in Figure 2.10:

2.3. NP-HARDNESS RESULTS 31

RS+FP+NI RS+FP+NI+BW

RS+MA+FP+NI RS+MA+FP+NI+BW

RS+MA+FP RA+MA+FP+BW

Figure 2.10: The NP-hardness of 2 variants implies the hardness of 4 other variants.

2.3.1 Introduction to 3D Perfect Matching

Both the hardness of FP + RS + MA and FP + RS + NI are shown by a reduction from the

NP-complete problem of 3D Perfect Matching [CKH+00], which we can see as a generalization

of bipartite matchings to 3-uniform hypergraphs. We will refer to this problem by 3-DM, and

for completeness, review it quickly: 3-DM is defined as follows. We are given three finite and

disjoint sets X, Y , and Z of cardinality k, as well as a subset of triples T ⊆ X × Y × Z,

and t = |T |. Set M ⊆ T is a 3-dimensional matching if and only if, for any two distinct

triples t1 = (x1, y1, z1) ∈ M and t2 = (x2, y2, z2) ∈ M , it holds that x1 6= x2, y1 6= y2,

and z1 6= z2. Our goal is to decide if we can construct a M ⊆ T which is perfect, that is,

a subset which covers all elements of X ∪ Y ∪ Z exactly once.

2.3.2 Hardness of Multi-Assignments

Our proof that FP+RS+MA is NP-hard is based on the following main ideas. We encode

a 3-DM instance as an FP + RS + MA instance as follows:

• For every element in the universe X∪Y ∪Z, we create a chunk type. Intuitively, in 3-DM,

each element must be covered, which corresponds to the requirement of FP + RS + MA

that each chunk type is processed.

• We will encode each triple as gadget with three leaves in a substrate tree T . The three

leaves are close to each other in T , and the placement of chunk replicas in FP+RS+MA

corresponds to the elements of the triples in these leaves.

• The node placement will correspond to the choice of triples, independently of which leaf

the node is mapped to. A node will process its collocated chunk, as well as the chunks in

other two leaves of the same gadget.

• In order to turn the optimization problem into a decision problem, we will use a cost

threshold ξ. The cost threshold will be met by all assignments which assign all three

chunks of each triple to a node which is collocated with one of the chunks. Assignments

which connect a chunk to a node in a different triple, will have a larger footprint, and are

considered to be infeasible.

Construction. Let I be an instance of 3-DM with t triples and set cardinality k (k = |X| =
|Y | = |Z|). We construct an instance I ′ of FP + RS + MA as follows:

32 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

Figure 2.11: Left: A 3-DM instance with three triples: (x1, y1, z1), (x2, y1, z2), and (x2, y2, z2). The solution is

indicated by the grey triples; the dashed triple is not used for the solution. Right: The corresponding problem

and solution of FP + MA + RS.

• Tree Construction: We create a tree consisting of a root, and for each triple, we create

a gadget which we directly attach as child of the root. The gadget is of height 2, and

has the following form: The gadget of each triple consists of an inner node (a router) and

three leaves.

• Chunks and chunk replicas: For each element in X, Y and Z, we create a chunk type (3 ·k
in total). Every gadget contains three chunk replicas, corresponding to the elements of

the triple. Each leave in a gadget, contains exactly one replica.

• Other properties: We set the number of to-be-embedded nodes to k, b1 to 1, and the

number of chunk slots in each node to the multi-assignment factor m = 3. We use

a threshold ξ = 4 · k.

Example. Figure 2.11 shows an example of our construction: An instance I of 3-DM is given:

The disjoint sets X, Y and Z have a cardinality k = 2. We will refer to the two elements

in X as x1 and x2, and use the same notation for the other two sets. T contains the three

triples (x1, y1, z1), (x2, y1, z2), and (x2, y2, z2). The goal of 3-DM is to find a subset M ⊆ T ,

which contains each element in each of the three sets exactly once. This instance only has one

solution: M = {(x1, y1, z1), (x2, y2, z2))}.
To construct the corresponding instance I ′ of FP + RS + MA, we create a gadget for each

triple in T . For each variable which occurs in a triple, the corresponding gadget contains a chunk

of the type of the variable. The triple (x2, y1, z2) of the instance is represented by the middle

gadget in Figure 2.11. The objective of I ′ is to spawn k = 2 nodes, with the smallest possible

footprint. If the total footprint is at most 4·k, we can construct a solution to I from the solution

to I ′. The footprint consists of the costs which occur when a node is embedded in a gadget, and

the three chunks of that gadget which are assigned to that node: one of the chunks is collocated

with the node, the other two have to be transferred via two hops, inflicting unitary costs on

each hop.

Correctness. Given these concepts, we can now show the computational hardness.

Theorem 2. FP + RS + MA is NP-hard.

2.3. NP-HARDNESS RESULTS 33

Proof. Let I be an instance of 3-DM and let I ′ be an instance of FP + RS + MA constructed

as described above. We prove that I ′ has a solution of cost ≤ ξ if (⇒) and only if (⇐) I has

a matching of size k.

(⇒) Let us take a feasible solution to 3-DM. We place a node in every gadget that corre-

sponds to the chosen triples. In each of the corresponding gadgets, we match every chunk to

the node in this gadget. This solution has cost exactly ξ. As every element of the universe is

covered, every chunk type is processed.

(⇐) Let us take a solution to FP + RS + MA of cost at mostξ. We choose triples that

correspond to gadgets where there are nodes. Since all chunks are processed, every element

of X, Y and Z is matched. Each node must process chunks that correspond to the triple,

otherwise the cost must be larger than ξ (high costs for chunk transportation).

2.3.3 Hardness of Inter-connects

Next, we prove that the joint optimization of node placement and replica selection is NP-hard

if an inter-connect has to be established between nodes. In our terminology, this is the FP +

RS + NI problem.

The proof is similar in spirit to the proof of FP + RS + MA, however, we modify the

construction to account for the absence of MA: we choose a high value for b1, such that nodes

will be directly collocated with their assigned chunks. We leverage the fact that any solution

which does not assign 0 or 3 chunks to each gadget, will have higher communication costs.

Construction. Let I be an instance of 3-DM with t triples and set cardinality k (k = |X| =
|Y | = |Z|). We will create an instance I ′ for FP + RS + NI as follows:

• We will construct the same tree as in previous reduction with chunk replicas placed in the

same way.

• The communication cost in the inter-connect is set to b2 = 1.

• The number of nodes (virtual machines) is nV = 3 · k, where k is the set cardinality.

• Only solutions which place a node in each leaf of k gadgets, can be converted into solutions

for the 3-DM problem. We use the cost threshold ξ = 6 · k + 18 · (k − 1) · k, to verify

whether a solution achieves this, transforming FP + RS + NI into a decision problem.

A detailed explanation of this value can be found in the proof of Theorem 3.

• We set the access cost b1 to a chunk replica to a high value W . This will force nodes to be

collocated with the replica. One example of sufficient (and polynomial but not necessarily

minimal) W is the value of the threshold ξ + 1. Any solution not assigning chunks to

collocated nodes, have cost > ξ: communicating a chunk inflicts costs W = ξ + 1 over

every link.

We focus on instances with unit server capacities.

Proof of correctness of the reduction. Intuitively, in order to minimize embedding costs,

nodes should be placed on near-by replicas. We use the following helper lemma.

34 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

Lemma 2. In every valid solution of I ′ of cost ≤ ξ, each gadget falls in one of two categories:

k gadgets have exactly 3 nodes, and t− k gadgets remain empty.

Proof. Since W is large enough, the 3 · k nodes have to be placed directly on different chunks,

resulting in 0 costs for the access network. Consider any pair of nodes communicating over

the inter-connect; due to our construction, the communication cost for each such pair is either

2 hops (if they belong to the same gadget) or 4 hops (if they belong to different gadgets).

The lemma then follows from the observation that ξ is chosen such that it is never possible to

distribute nodes among more than k gadgets.

Theorem 3. FP + RS + NI is NP-hard.

Proof. Let I be an instance of 3-DM and let I ′ be an instance of FP + RS + NI constructed

as described above. We prove that I ′ has solution of cost ≤ ξ if (⇒) and only if (⇐) I has

a solution.

(⇒) In order to compute a solution for I ′ given a solution for I, we proceed as follows.

Given an exact covering set of triples S = {t1, t2, . . . , tk}, we place three nodes in each gadget

that corresponds to every triple of S. Chunks are matched to the nodes which are located on

the same server.

The solution has the following cost: (1) the communication cost inside a gadget is 2 ·
(

3
2

)
,

as every pair contributes two hops; (2) the communication cost from each gadget to all other

gadgets is 4 ·3 ·3 ·(k−1)/2, where the factor 4 is for the communication over 4 hops, the factor 3

corresponds to the number of nodes per gadget, and 3 · (k−1) is the number of nodes in remote

gadgets; as we count each pair twice, we need to divide by two in the end. Summing up over

all k gadgets, we get exactly ξ.

(⇐) Given a solution for I ′, we can exploit Lemma 2 to construct a solution for I. We

know that in any solution of cost at most ξ, k gadgets contain exactly 3 nodes. These gadgets

correspond to a valid 3D Perfect Matching: exactly one replica of every chunk type is processed

and hence every element is covered exactly once.

2.4 A Detailed Study of Replica Selection Hardness

We have seen that replica selection flexibilities can render embeddings computationally

hard. We will now provide a more detailed look at this hardness result and explore the minimal

requirements for rendering replica selection hard. In particular, we will show that already two

replicas for each chunk type are sufficient to introduce intractability.

Namely, we provide the NP-hardness results for two restricted variants of Virtual Cluster

Embedding (Sections 2.4.1 and 2.4.2). We augment the RS variant of V CEMB problem in

the following way: by RS(k) we denote the problem where each chunk has the redundancy

factor at most k. In Section 2.4.1 we provide the hardness result for RS(2) + MA + FP, and in

Section 2.4.2 we provide the hardness result for RS(2) + FP + NI + BW.

Both problems are reduced from the problem 3DPM (see Section 2.3.1 with no further

restrictions. The constructions are based upon the reduction of 3DPM to FP + RS + MA

2.4. A DETAILED STUDY OF REPLICA SELECTION HARDNESS 35

(see Section 2.3.2) and the reduction of 3DPM to FP + RS + NI (see Section 2.3.3). However,

in contrast to Section 2.3.3, in two replica variant without multiple assignment, we added the

bandwidth constraints. It is currently unknown to the authors of this very paper, whether the

hardness result holds without bandwidth constraints (namely, whether the problem RS(2) +

FP + NI is NP-hard). The necessity for bandwidth constraints arises as to deal with restricted

factor of replication, we need to introduce gadgets in the tree that makes the tree asymmetric.

Introducing bandwidth constraints allows to control the number of nodes spawning in certain

parts of the tree.

2.4.1 Two Replicas without Bandwidth Constraints

We now show that the 2-replica selection problem is even NP-hard without capacity con-

straints. In particular, we consider the problem variant RS(2) + MA(4) + FP with at most two

replicas of each chunk type and assignment factor four. There are no capacity constraints on

links.

Our construction consists of two major modifications to hardness result without replication

factor restrictions (for that result, refer to Section 2.3.2).

Unique chunks on the comb. First, we provide the tools for restricting the placement of

nodes in certain parts of the tree. In Section 2.3.2, due to symmetric structure of the tree, the

carefully crafted threshold value allowed us to prove that e.g. no Triple Gadget ever had two

or more nodes placed in it. We still use the threshold value as the placement mechanism, but

in this section, due to the asymmetrical tree construction, we combine it with the concept of

unique chunks on the comb (by comb we denote the balanced tree, where all non-root vertices

have at most one child).

For an introduction to the concept of unique chunks, let us consider the following exam-

ple. Suppose that within one V CEMB construction, we would like to encode not one 3DPM

instance, but two 3DPM instances: M1 and M2, with disjoint universe and different number

of triples to be chosen: n1 and n2. We perform the following modifications to the encoding

provided in Section 2.3.2. The multi-assignment factor grows by 1, that is the instance we con-

struct is the RS+MA(4)+FP instance. We construct two subtrees T1 and T2, that correspond

to M1, resp. M2; we construct two two-edge-level combs C1 and C2, with number of leaves

n1, resp. n2. We attach M1 and C1 (resp. M2 and C2) to the common root and we name the

resulting subtree P1, resp. P2. Next, we attach P1 and P2 to the common root. In the end, the

height of the tree grew by 2. Finally, we populate both combs with unique chunks, and we set

the number of to-be-placed nodes to nV = n1 + n2. We modify the threshold to be the sum

of the thresholds for constructions for M1 and M2 plus 4 · (n1 + n2). The last substrate of the

threshold value corresponds to transportation of the fourth chunk processed by each machine

for the distance of four.

To see why the example indeed can solve two instances of 3DPM, we need the following

observations. First, we claim that no node is ever placed in a comb. To prove this fact, we use

the property of the comb that the leaves are highly separated, and the fact that each machine

has to process 4 chunks. Next, we claim that the number of nodes spawned in P1 (resp. P2) is

36 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

n1 (resp. n2). To see this, consider any imbalance of the number of spawned nodes; notice that

some chunks in the underpopulated comb are processed outside of their Pi subtree, resulting in

the solution that exceeds the threshold.

Families of chunk types. The second tool that we introduce allows us to express the re-

dundancy of chunks without actually replicating chunks more than two-fold. For simplicity of

introduction, we consider the scenario with no multi-assignment. For each chunk type c with

redundancy, we count the number of occurrences of replicas of such a chunk in the tree, and

name it rc. We replace the chunk type c with r chunk types, which we call the family Fc of that

chunk type. For each occurrence of replica of c, we replace it with a replica of any chunk type

from the family (without repetitions). To this point, the redundancy factor was reduced from

rc to 1. Now, we construct the gadget Gc for chunk type c, which consists of rc leaves, each

hosting the second replica of each chunk type from family Fc. We use the technique of unique

chunks on the comb to constraint the number of nodes in Gc to be exactly rc − 1. We provide

necessary additional rc− 1 nodes to be placed. Hence, exactly 1 node is placed on a chunk type

of family Fc outside the gadget Gc, and exactly rc − 1 nodes cover the remaining rc − 1 chunk

types inside gadget Gc. All chunk types are processed, the replication factor is reduced to 2,

and the size of construction grows polynomially.

Introduction to the reduction. As we already stated, we modify the construction from

Section 2.3.2. As a way to deal with replication, we use the families of chunk types using

the unique chunks on the comb. We extend the construction of a gadget for chunk type with

redundancy, by incorporating the fact that the multi-assignment factor is 4. For the construction

to remain correct given such a multi-assignment factor, we introduce further chunks types with

one chunk replica to place in the chunk gadget and use the excessive 3 data processing capacities.

Construction. For an arbitrary instance I3DPM of 3-DM we construct a RS(2)+MA(4)+FP

instance IVCEMB the way described in the remainder of this section. Let k = |X| = |Y | = |Z|.
By T we denote the set of all triples of I3DPM, and let t = |T |. For each e ∈ X ∪ Y ∪ Z,

by Te we denote the set of all triples that contain element e. Let deg(e) = |Te|, and note that∑
e deg(e) = 3 · t.
We proceed with the construction as follows.

Chunk types and replicas We construct three sets of chunk types. The first set corresponds

to elements of the universe (that is, X ∪Y ∪Z). The construction of such chunk types is similar

to construction of chunk types in Section 2.3.2, but to take into consideration the restricted

replication factor, we construct the familiy of chunk types (as described in the introduction to

this section). Namely, for each element of universe e, we construct as many chunk types as

there are occurences of e in triples of I3DPM. Each such chunk type has exactly two replicas.

The other two sets of chunk types has one replica, therefore those are called called unique

chunks. We construct two types of unique chunks, distinguished by a different role in the

construction. For unique chunks we simply co-notate the chunk type with chunk replica.

Formally, the construction of chunk types and replicas unfolds as follows:

2.4. A DETAILED STUDY OF REPLICA SELECTION HARDNESS 37

. . .

. . .

. . .

.

. . .

3t k
4 · (deg(e1)− 1) + 1 4 · (deg(e3·k)− 1) + 1

τ1 τ2 τt u1 u2 uk e1 e2 e3·k

root

Matching Subtree Cover Subtree

Triple Gadgets Unique Gadgets Element Gadgets

Figure 2.12: Overview of the substrate network.

1. For each triple τ ∈ T , we construct 3 chunk types, with two replicas each. We construct

different chunk types for each triple τ , which contain element e (in total deg(e) chunk

types). We refer to those replicas by ch1(e, τ) and ch2(e, τ). In total we construct 2 ·∑
e deg(e) = 6 · t chunk replicas.

2. We construct k additional chunk types named u1, . . . , uk with one replica each.

3. For each element e ∈ X ∪Y ∪Z, we construct additional 3 · (deg(e)− 1) chunks, with one

replica each. We call this set Ue.

Tree. We construct the tree that has the following structure (see Figure 2.12):

1. The physical network consists of two subtrees connected to the root: the Matching Subtree

and the Cover Subtree. The Matching Subtree consists of t Triple Gadgets, one per each

triple τ ∈ T and k Unique Gadgets. The Cover Subtree consist of 3 · k Element Gadgets,

one for each element e ∈ X ∪ Y ∪ Z.

2. Triple Gadget consists of four vertices: three leaves and the root of the gadget.

3. Unique Gadget consists of two vertices: the leaf and the root of the gadget. We construct

the root node of the gadget not only to keep the tree balanced, but also to keep leaves

of Unique Gadgets far from leaves of other Unique Gadgets. Note that Unique Gadgets

form a comb.

4. Element Gadget for element e has a structure that depends on the number of triples that

cover e. The Element Gadget consists of the root and 4 · (deg(e)− 1) + 1 leaves.

Chunk Placement. The chunks are placed as follows:

1. Chunks in the Matching Subtree: In Triple Gadget of triple τ we put three replicas:

ch1(eX(τ), τ), ch1(eY (τ), τ), ch1(eZ(τ), τ), one per each leaf.

38 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

2. Chunks in the Unique Gadgets: We place replicas u1, . . . , uk at the leaves of Unique

Gadgets.

3. Chunks in Element Gadgets: Consider the Element Gadget for the element e ∈ X∪Y ∪Z.

We place two types of replicas in the leaves of the gadget. We put replicas ch2(τ, e)

for each τ ∈ Te. Additionally, we place all the replicas from set Ue. In total, we place

4 · (deg(e)− 1) + 1 replicas, one per each leaf of the gadget.

Other properties of the instance.

1. Multiple assignment: We set the multi-assignment factor to m = 4.

2. Number of nodes: We set the number of nodes to spawn to nV = k +
∑

e(deg(e)− 1) =

3 · t− 2 · k nodes.

3. Threshold: We set the following threshold: ξ = 18 · t− 10 · k. This value corresponds to

the cost of solution, where k nodes are matched to 4 chunks that are in distance: 0, 2, 2

and 4 to the node, and remaining nV − k nodes are matched to 4 chunks that are in

distance: 0, 2, 2 and 2 to the node.

The reduction.

Given any 3DPM instance I3DPM, we produce corresponding instance of V CEMB variant,

namely the RS(2) + MA + FP instance, in the way described above. We refer to such RS(2) +

MA + FP instance as the IVCEMB.

The reduction (Theorem 4) unfolds in two stages. First, given a solution S3DPM to I3DPM,

we construct a solution SVCEMB to IVCEMB. This part is the easier of the two, and mainly

consists of placing nodes in Triple Gadgets for triples chosen in S3DPM.

In the second stage, given SVCEMB, we construct the S3DPM. In this stage, the main difficulty

lies in showing that SVCEMB has certain structure.

We call the Triple Gadget active, if it contains a node at any leaf, and we call the node active

if it is placed in Triple Gadget . Our goal is to show that in every feasible solution, exactly k

Triple Gadgets are active (Lemma 5), and hence we can construct S3DPM from the triples that

correspond to active Triple Gadgets in SVCEMB.

In IVCEMB, chunks can be matched to nodes at distance 0, 2, 4 or 6. We call the matches at

distance 0 the free matches, the matches at distance 2 the neighbouring matches. In addition

we call the matches at distance 0 or 2 the short matches, and the matches at distance 4 or 6 the

long matches. We call the distance between the pair of leaves the short distance, if the distance

between them is at most 2, otherwise we call said distance the long distance.

Proving the existance of more than k long matches is sufficient to show that the instance

is infeasible, as its cost exceeds the threshold. To see this, note that the threshold value ξ

corresponds to the cost of solution, where k nodes has 1 free match, 2 neighbouring matches

and 1 long match at distance of 4 hops, and remaining nV − k nodes has 1 free match and

3 neighbouring matches assigned. Note that the limit of nV free matches is exhausted, hence

excessive long matches cannot be compensated in any way. Hence, at most k long matches are

present in any feasible solution.

2.4. A DETAILED STUDY OF REPLICA SELECTION HARDNESS 39

Lemma 3. In SVCEMB there are have exactly k nodes spawned in the Matching Subtree.

Proof. We claim that each node spawned in the Matching Subtree results in at least one long

match. This fact is a consequence of the structure of the tree and the fact that multi-assignment

factor is set to 4. For each node spawned in the Matching Subtree, by the construction of the

tree, the node has at most 3 leaves in short distance, hence at least one of the matches is

long. Hence, we conclude that spawning more than k nodes in the Matching Subtree results in

more than k long matches, which results in infeasibility of the solution. In addition, each node

spawned in Unique Gadget results in at least 3 long matches, as the only leaf in short distance

is the leaf collocated with the node.

As at most k nodes are spawned in Matching Subtree, at least nV − k nodes are spawned in

the Cover Subtree. Assume then that nV − k + i nodes spawned in the Cover Subtree for non-

negative i. Now, we argue that such node configuration results in 3·i long matches. Consider the

Element Gadget ge for element e. The gadget ge has exactly 4·(deg(e)−1)+1 leaves, each hosting

exactly one chunk replica. As 4 · (deg(e)−1)+1 mod 4 = 1, spawnining deg(e)−1+ j nodes in

ge for non-negative j results in at least 3 · j long matches by the fact that there are insufficient

chunk replicas in the short distance. Using the fact that
∑

e(deg(e)− 1) = 3 · t− 3 · k = nV − k,

by pidgeon-hole principle we conclude that indeed spawning nV − k + i nodes in the Cover

Subtree results in at least 3 · i long matches.

Consider the configuration with nV − k + i nodes spawned in the Cover Subtree, and k − i
nodes spawned in the Matching Subtree. Such configuration results in at least 2 · i + k long

matches, where 3 · i long matches come from the excessive nodes spawned in the Cover Subtree,

and k − i long matches come from k − i nodes in the Matching Subtree. Hence we deduce that

i = 0, as otherwise the number of long matches would exceed k.

Lemma 4. In SVCEMB no node spawned in Unique Gadget.

Proof. By Lemma 3, exactly k nodes spawned in the Matching Subtree. Suppose that out of

k nodes in the Matching Subtree, a non-negative number of nodes j spawned in the Unique

Gadgets. From the fact that each leaf of Unique Gadget has long distance to every other leaf,

every node spawned in Unique Gadget result in at least 3 long matches. Hence, the total number

of long matches is at least k− j + 3 · j. Finally, for the solution to be feasible we allow at most

k long matches, therefore no node spawns in the Unique Gadget .

Lemma 5. In SVCEMB there are have exactly k active Triple Gadgets.

Proof. By Lemmas 4 and 3 we conclude that k nodes spawned in the Triple Gadgets. As there

are exactly 3 replicas in each Triple Gadget , spawning more than one node in a single Triple

Gadget results in at least additional 3 long matches. Hence, exactly k Triple Gadgets are

active.

Lemma 6. In SVCEMB every chunk replica besides u1, . . . , uk is matched by a short match.

40 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

Proof. By Lemma 5, exactly k nodes are spawned in Triple Gadgets, and by Lemma 4 we deduce

that chunks u1, . . . , uk are matched by long matches. As at most k long matches are allowed

for the solution to be feasible, remaining matches are short.

Theorem 4. RS(2) + MA + FP is NP-hard.

Proof. Let’s take any instance I3DPM of 3DPM. We show that IVCEMB has a solution of cost ≤ ξ
if and only if I3DPM ∈ 3DPM (there exists a perfect 3D matching in I3DPM).

(⇐) Let’s take any feasible solution S3DPM to I3DPM. We construct a solution SVCEMB in

the following way:

1. We place k nodes in k Triple Gadgets (one per gadget) that correspond to triples in S3DPM.

The choice of exact leaf of the gadget to place a node is arbitrary. We match each such

node to 3 chunk replicas in the gadget it is placed, and we match 1 arbitrary, unmatched

chunk replica in Unique Subtree.

2. In each Element Gadget that corresponds to element e, we place deg(e) − 1 nodes and

match them to arbitrary chunks in this gadget, which are not yet matched in any Triple

Gadget .

We can observe that every chunk type was processed, exactly k +
∑

e(deg(e) − 1) nodes

are spawned, and each of the nodes process exactly 4 chunk replicas. To see that indeed the

produced solution do not exceed the threshold ξ, we sum up the total transportation cost. The k

nodes placed in Triple Gadgets have 1 free match and 2 neighbouring matches to chunk replicas

within the Triple Gadget , and 1 long match of cost 4 (to some Unique Gadget). The remaining

nV − k nodes placed in the Cover Subtree have 1 free match and 3 neighbouring matches. In

total, the cost incurred is 8 · k + 6 · (nV − k) = ξ. Hence, the solution is indeed feasible.

(⇒) Let’s take any feasible solution SVCEMB to IVCEMB in the way described in the con-

struction section. By Lemma 5, exactly k Triple Gadgets are active. We construct the solution

S3DPM from the set of triples that correspond to active Triple Gadgets.

It remains to show that S3DPM indeed matches every element of X ∪ Y ∪ Z. By Lemma 6,

each match of ch(e, τ) for each e ∈ X ∪ Y ∪ Z and each τ ∈ T is matched by a short match.

Hence, each active node processes the 3 chunks that are placed in its Triple Gadget . In each

Element Gadget for element e, one chunk ch(e, τ) for some τ ∈ T is not matched. Let’s call this

chunk instance γ(e), and let’s call γ = ∪eγ(e). Note that |γ| = 3 · k. The set γ is covered by

active nodes, and hence the set of triples in S3DPM form a 3D Perfect Matching of X ∪Y ∪Z.

2.4.2 Two replicas without Multiple Assignment

We now show that RS(2) + FP + NI + BW is even NP-hard without multiple assignment.

The proof is similar in spirit to proof of hardness of RS(2) + FP + MA.

The reduction (Theorem 4) unfolds in two stages. First, given a solution S3DPM to I3DPM,

we construct a solution SVCEMB to IVCEMB. This part is the easier of the two, and mainly

consists of placing nodes in Triple Gadgets for triples chosen in S3DPM.

2.4. A DETAILED STUDY OF REPLICA SELECTION HARDNESS 41

In the second stage, given SVCEMB, we construct the S3DPM. Again, we use the technique

that we call “families of chunk types”, which was introduced in previous section. The main

technical difficulty lies in controlling the number of nodes that are spawned in certain parts of

(asymmetric) tree. To guantee the desired number of spawned nodes, we use the bandwidth

constraints. Namely, if the number of nodes to be spawned in a subtree is k, we set the

bandwidth constraints on the uplink of the subtree to k · (m− k), where m is the total number

of machines to spawn in the instance. As we further see in Lemma 7, such bandwidth constraint

in form of a quadratic expression provides both lower- and upper-bound on the number of

machines spawned in such subtree. To see this, consider a simple example: regardless of the

bandwidth constraint on the uplink of the subtree, capacities are not exceeded in at least two

scenarios: with all m nodes spawned in the subtree, and with 0 nodes spawned in the subtree.

More precisely, bandwidth constraints in such form excludes configurations with number of

nodes between k and m− k.

However, we are interested only in lower-bounding the number of nodes to spawn in a subtree,

and in fact the upper-bound on the number of nodes is only a liability. We make sure that the

upper-bound on the number of nodes is always satisfied by artificially increasing the number of

total nodes to be spawned. In this way the upper-bound on number of nodes always exceeds the

number of leaves of any subtree in which we would like to have k nodes spawned, see Lemmas 8

and 9. Additional nodes do not interfere with the rest of the construction, as we provide unique

chunks for them to process.

Contruction. For an arbitrary instance I3DPM of 3-DM we construct a RS(2)+FP+NI+BW

instance IVCEMB the way described in the remainder of this section. Let k = |X| = |Y | = |Z|.
By T we denote the set of all triples of I3DPM, and let t = |T |. For each e ∈ X ∪ Y ∪ Z, by

Te we denote the set of all triples that contain element e. Let deg(e) = |Te|, and note that∑
e deg(e) = 3 · t.
We proceed with the construction as follows.

Chunk Types. We construct two sets of chunk types. The first set corresponds to elements of

the universe (that is, X∪Y ∪Z). The construction of such chunk types is similar to construction

of chunk types in Section 2.3.3, but to take into consideration the restricted replication factor, we

construct the familiy of chunk types (as described in the introduction to this section). Namely,

for each element of universe e, we construct as many chunk types as there are occurences of e

in triples of I3DPM. Each such chunk type has exactly two replicas.

The other set of chunk types has one replica, therefore those are called called unique chunks.

For unique chunks we simply co-notate the chunk type with chunk replica.

Formally, the construction of chunk types and replicas unfolds as follows:

1. For each triple τ ∈ T , we construct 3 chunk types, with two replicas each. We construct

different chunk types for each triple τ , which contain element e (in total deg(e) chunk

types). We refer to those replicas by ch1(e, τ) and ch2(e, τ). In total we construct 2 ·∑
e deg(e) = 6 · t chunk replicas.

2. Additionally, we construct max{3 · t + 3 · k + 1,
∑

e(2 · deg(e) − 1)} chunk types called

unique chunks. We refer to the set of unique chunks by U .

42 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

. . .

. . .

. . .

.

. . .

3t
deg(e1) deg(e3·k)

τ1 τ2 τt u1 u2 uk e1 e2 e3·k

root

Matching Subtree Cover Subtree

Triple Gadgets Unique Gadgets Element Gadgets

max{3 · t+ 3 · k + 1, 6 · t− 3 · k}

Figure 2.13: Overview of the substrate network.

The substrate network. We construct the tree that has the following structure (see Fig-

ure 2.13):

1. The physical network consists of three subtrees connected to the root: the Matching

Subtree, the Cover Subtree, and a Unique Subtree. In the Matching Subtree we put t

Triple Gadgets. The Cover Subtree consist of k element gadgets.

2. The Unique Subtree consist of |U | leaves, and two middle nodes: a lower and an upper

middle node. Note that this is different from RS(2) + FP + MA(4) NP-completeness

proof, where Unique Subtree was placed in the Matching Subtree.

3. Triple Gadget : For each triple, we create a subtree consisisting of four vertices: three

leaves and one triple root. We attach the root of the triple to the root of the matching

subtree.

4. Element Gadget : For each element e ∈ X ∪ Y ∪ Z, we construct a subtree consisting of

the root of the element (attached to the root of the cover subtree), and deg(e) leaves.

Chunk placement. The chunks are placed as follows:

1. Chunks in the Matching Subtree: In Triple Gadget of triple τ we put three replicas:

ch1(eX(τ), τ), ch1(eY (τ), τ), ch1(eZ(τ), τ), one per each leaf.

2. Chunks in the Unique Subtree: We place replicas U at the leaves of Unique Gadgets.

3. Chunks in Element Gadgets: Consider the Element Gadget for the element e ∈ X∪Y ∪Z.

We place two types of replicas in the leaves of the gadget. We put replicas ch2(τ, e) for

each τ ∈ Te. In total, we place deg(e) replicas, one per each leaf of the gadget.

Bandwidth constraints. We use bandwidth constraints of the form bw(k) := k · (nV − k),

where nV is the total number of nodes to be spawned in the instance. Namely, we set the

bandwidth constraints of an uplink of an Element Gadget for each element e to bw(deg(e)−1),

the bandwidth of an uplink of a Matching Subtree to bw(n), and an uplink of a Cover Subtree

2.4. A DETAILED STUDY OF REPLICA SELECTION HARDNESS 43

to bw(
∑

e(deg(e) − 1). Note that out of deg(e) leaves of Element Gadget for element e, we

allow to spawn deg(e)− 1 nodes.

The threshold value and other properties of the instance. We set the cost threshold for any

solution to the following value:

ξ = 2 ·
(

3

2

)
· k (over 2 hops in the Matching Subtree)

+ 4 ·
(

3 · k
2

)
(over 4 hops in the Matching Subtree)

+ 4 ·
(
u

2

)
(over 4 hops in the Unique Gadgets)

+
∑
e

2 ·
(

deg(e)− 1

2

)
(over 2 hops in the Cover Subtree)

+ 4 ·
(∑

e(deg(e)− 1)

2

)
(over 4 hops in the Cover Subtree)

+ 6 ·
(
nV
2

)
(over 6 hops)

where nV is the total number of nodes to be spawned in the instance, and u = |U |. We

set b1, the cost of chunk transportation to ξ + 1 (so that no chunk transportation happens in

any feasible solution), b2 = 1, and we host only one node per machine. We set the number of

machines to spawn to: nV := 3 · k +
∑

e(deg(e)− 1) + |U |.

Properties of the substrate network.

Lemma 7. Assume we have a RS(2)+FP+NI+BW instance I with a subtree T ′ with l leaves

and the bandwidth capacity on uplink of T ′ is bw(k). Assume that no chunk transportation is

allowed (b1 =∞, so every node must be collocated with the chunk it processes in every feasible

solution), and b2 = 1. Then in any feasible solution the number s of nodes spawned in T

satisfies s ≤ k ∨ nV − s ≤ k, and s ≤ l.

Proof. It holds that s ≤ l as we cannot spawn more nodes than leaves. The bandwidth

allocation on the uplink of T ′ is uplink(s, T) := s · (nV − s), as no chunk transportation is

allowed (b1 =∞), and every node in T has to communicate over T ′’s uplink with nodes spawned

outside of T ′. Therefore, in every feasible solution we have: uplink(s, T ′) ≤ bw(k). Let’s

define the remaining bandwidth on the uplink of T ′ remainBw(s) := bw(k) − uplink(s, T ′) =

s2 − s · nV − k2 + k · nV . Every feasible solution fulfills remainBw(s) ≥ 0, which is true for

s ≤ k ∨ nV − s ≤ k (follows from the properties of the quadratic function).

Next, we show how to precisely control the number of nodes in the constructed subtree.

Observation 2. In every feasible solution we have exactly |U | nodes spawned in a Unique

Subtree (no chunk transportation is allowed, and every chunk type must be processed).

Lemma 8. The following properties holds in SVCEMB:

44 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

1. The number of nodes spawned in a Matching Subtree is 3 · k.

2. The number of nodes spawned in a Cover Subtree is
∑

e(deg(e)− 1)

Proof. From Observation 2 we know that we have |U | nodes in the Unique Subtree. Let’s refer

to the number of nodes spawned in a Matching Subtree by M , and to the number of nodes

spawned in Cover Subtree by C. By applying Lemma 7 to Matching Subtree, we know that:

M ≤ 3 · k ∨ M ≥ nV − 3 · k. We observe that nV − 3 · k is greater than the number of

leaves in a Matching Subtree. By applying Lemma 7 to the Cover Subtree we know that: C ≤∑
e(deg(e)−1)∨C ≥ nV −

∑
e(deg(e)−1). We observe that nV −

∑
e(deg(e)−1) is greater than

the number of leaves in the Cover Subtree. We also know that nV = |U |+ C +M . Therefore,

by the pigeon-hole principle C =
∑

e(deg(e)− 1) and M = 3 · k.

Lemma 9. In the solution SVCEMB, the number of nodes spawned in Element Gadget of ele-

ment e is deg(e)− 1.

Proof. Let’s call the number of nodes spawned in the Element Gadget of element e the xe. From

Lemma 7, we know that xe ≤ deg(e)−1∨xe ≥ nV −deg(e)+1. We observe that nV −deg(e)+1

is greater than the number of leaves of the gadget, which is deg(e). From Lemma 8, we know

that the number of nodes spawned in the entire Cover Subtree is
∑

e(deg(e) − 1). Therefore,

by the pigeon-hole principle, we have that xe = deg(e)− 1.

From the above lemmas we know the precise number of nodes spawned in certain parts of

the tree. Feasible solutions only differ in the choice of the deg(e) − 1 out of deg(e) chunks in

each Element Gadget, and the placement of nodes in the Matching Subtree.

Similar in spirit to the NP-completeness proof of RS(2) + MA(4) + FP, we call the Triple

Gadget active if it contains exactly three nodes. Similarly, we call the Triple Gadget inactive if

it does not contain spawned nodes, and partially active if it has one or two spawned nodes.

Lemma 10. In SVCEMB, we have exactly k active Triple Gadgets.

Proof. Since I is feasible, we know that it has a solution S of cost ≤ ξ. By Lemma 8, we

know that there are exactly 3 · k spawned nodes in the Matching Subtree. Therefore, by the

pigeon-hole principle, we know that we have at most k active Triple Gadgets. It remains to show

that there are no partially active Triple Gadgets in the solution of cost ≤ ξ. Using Lemma 9,

we conclude that the communication cost of nodes in the Cover Subtree is the same for every

feasible solution (let’s name that cost P). We also know that the communication cost between

nodes in Cover Subtree and Matching Subtree is the same for every feasible solution (let’s name

it Q). Let’s call the would-be cost of communication in the Matching Subtree, if there were

exactly k active gadgets, R. The threshold value was chosen so that ξ = P + Q + R. If we

have at least one partially active gadget, then the cost of communication in Matching Subtree

is greater than R, because we increase the number of 4-hop communications by at least one

per each partially active gadget in comparison to a solution where we have exactly k active

gadgets.

2.5. CONCLUSIONS 45

FP

MA

RS

NI

BW
NP-complete
trivial
flow algorithms
matching algorithms
dynamic programming

Figure 2.14: Fastest algorithms for different respective problem variants. Variants depicted by solid black are

NP-hard, and variants depicted by checked filling are trivially solvable. For the remainder of variants we provide

the fastest algorithm determined by the key.

The reduction. Using the properties of the substrate network, we perform the reduction in

the following way.

Theorem 5. RS(2) + FP + NI + BW is NP-hard.

Proof. Let’s take any instance I3DPM of 3DPM. We show that IVCEMB has a solution of cost ≤ ξ
if and only if I3DPM ∈ 3DPM (there exists a perfect 3D matching in I3DPM).

Let’s take an instance I of 3DPM and construct an instance I ′ of RS(2) + FP + NI + BW

in the way described above. We show that I ′ has solution of cost ≤ ξ if and only if I ∈ 3DPM

(there exists a perfect 3D matching).

(⇐) Let’s take any feasible solution S3DPM to I3DPM and produce a solution SVCEMB

to IVCEMB in the way described in the construction section. We show that the cost of SVCEMB

is indeed ≤ ξ. For each triple t ∈ T in S3DPM, we put 3 nodes at leaves of triple gadgets

corresponding to those triples. In each element gadget (that corresponds to element e), we

put deg(e)− 1 nodes. In each element gadget there is only one leaf without the node placed in

it: this node contains the chunk replica that is processed in the Matching Subtree. It is easy to

see that SVCEMB has cost exactly ξ and no bandwidth constraint is violated. Each chunk type

is processed.

(⇒) Let’s take any feasible solution SVCEMB to IVCEMB and produce a solution S3DPM

to I3DPM by taking triples that correspond to active triple gadgets. Using Lemma 10, we

conclude that there are exactly k active triple gadgets. By feasibility of S3DPM, we know that

each chunk type is processed. From Lemma 9, we know that out of deg(e) chunk types that

correspond to e ∈ X ∪ Y ∪ Z, exactly one is processed in the Matching Subtree, hence each

element of X ∪ Y ∪ Z is matched.

46 CHAPTER 2. VIRTUAL NETWORKS WITH STATIC TOPOLOGY

2.5 Conclusions

In this chapter we have shown that despite the multiple dimensions of flexibility in terms

of chunk assignment and node placement, and despite the large scale of modern datacenters,

many problems can be solved efficiently. However, we have also shown that several embedding

problems are NP-hard already in two- and three-level trees—a practically relevant result given

today’s datacenter topologies [ALV08].

Our results are summarized in Figure 2.14. One interesting takeaway from this figure regards

the question which properties render the problem NP-hard. For instance, we see that, BW does

not influence the hardness of any problem variant, while RS is crucial for NP-hardness. MA

only affects hardness if combined with RS. NI is trivial without FP, and FP requires more

sophisticated algorithms when combined with NI or MA; in combination with RS and MA

or NI, FP renders the problem NP-hard.

Chapter 3

Virtual Networks with Dynamic

Topology

3.1 Problem Definition

We indroduce BRP, the online Balanced RePartitioning problem, which is defined as follows.

There is a set of n nodes, initially distributed arbitrarily across ` clusters, each of size k. We

call two nodes u, v ∈ V collocated if they are in the same cluster.

An input to the problem is a sequence of communication requests σ = (u1, v1), (u2, v2),

(u3, v3), . . ., where pair (ut, vt) means that nodes exchange a fixed amount of data. For suc-

cinctness of later descriptions, we assume that a request (ut, vt) occurs at time t ≥ 1. At

any time t ≥ 1, an online algorithm needs to serve the communication request (ut, vt). Right

before serving the request, the online algorithm can repartition the nodes into new clusters.

We assume that a communication request between two collocated nodes costs 0. The cost of

a communication request between two nodes located in different clusters is normalized to 1, and

the cost of migrating a node from one cluster to another is α ≥ 1, where α is a parameter (an

integer). For any algorithm Alg, we denote its total cost (consisting of communication plus

migration costs) on sequence σ by Alg(σ).

The description of some algorithms (in particular the ones in 3.2 and 3.3) is more natural

if they first serve a request and then optionally migrate. Clearly, this modification can be

implemented at no extra cost by postponing the migration to the next step.

We are in the realm of competitive worst-case analysis and compare the performance of

an online algorithm to the performance of an optimal offline algorithm. Formally, let Onl(σ)

resp. Opt(σ) be the cost induced by σ on an online algorithm Onl resp. on an optimal offline

algorithm Opt. In contrast to Onl, which learns the requests one-by-one as it serves them,

Opt has a complete knowledge of the entire request sequence σ ahead of time. The goal is to

design online repartitioning algorithms that provide worst-case guarantees. In particular, Onl

is said to be ρ-competitive if there is a constant β such that for any input sequence σ it holds

that

Onl(σ) ≤ ρ ·Opt(σ) + β .

Note that β cannot depend on input σ but can depend on other parameters of the problem,

47

48 CHAPTER 3. VIRTUAL NETWORKS WITH DYNAMIC TOPOLOGY

such as the number of nodes or the number of clusters. The minimum ρ for which Onl is

ρ-competitive is called the competitive ratio of Onl.

We consider two different settings:

Without augmentation: The nodes fit perfectly into the clusters, i.e., n = k · `. Note that

in this setting, due to cluster capacity constraints, a node can never be migrated alone,

but it must be swapped with another node at a cost of 2α. We also assume that when an

algorithm wants to migrate more than two nodes, this has to be done using several swaps,

each involving two nodes.

With augmentation: An online algorithm has access to additional space in each cluster. We

say that an algorithm is δ-augmented if the size of each cluster is k′ = δ · k, whereas

the total number of nodes remains n = k · ` < k′ · `. As usual in competitive analysis,

the augmented online algorithm is compared to the optimal offline algorithm with cluster

capacity k.

3.2 A Simple Upper Bound

As a warm-up and to present the model, we start with a straightforward O(k2 · `2)-com-

petitive deterministic algorithm Det. At any time, Det serves a request, adjusts its internal

structures (defined below) accordingly and then possibly migrates nodes. Det operates in

phases, and each phase is analyzed separately. The first phase starts with the first request.

In a single phase, Det maintains a helper structure: a complete graph on all ` · k nodes,

with an edge present between each pair of nodes. We say that a communication request is

paid (by Det) if it occurs between nodes from different clusters, and thus entails a cost for

Det. For each edge between nodes x and y, we define its weight wx,y to be the number of paid

communication requests between x and y since the beginning of the current phase.

Whenever an edge weight reaches α, it is called saturated. If a request causes the corre-

sponding edge to become saturated, Det computes a new placement of nodes (potentially for

all of them), so that all saturated edges are inside clusters (there is only one new saturated

edge). If this is not possible, node positions are not changed, the current phase ends with the

current request and a new phase begins with the next request. Note that all edge weights are

reset to zero at the beginning of a phase.

Theorem 6. Det is O(k2 · `2)-competitive.

Proof. We bound the costs of Det and Opt in a single phase. First, observe that whenever

an edge weight reaches α, its endpoint nodes will be collocated until the end of the phase, and

therefore its weight is not incremented anymore. Hence the weight of any edge is at most α.

Second, observe that the graph induced by saturated edges always constitutes a forest. For

the sake of contradiction, suppose that, at a time t, two nodes x and y, which are not connected

by a saturated edge, become connected by a path of saturated edges. From that time onward,

Det stores them in a single cluster. Hence, the weight wx,y cannot increase at subsequent time

3.3. ALGORITHM CREP 49

points, and (x, y) may not become saturated. The forest property implies that the number of

saturated edges is smaller than k · `.
The two observations above allow us to bound the cost of Det in a single phase. The

number of reorganizations is at most the number of saturated edges, i.e., at most k · `. As the

cost associated with a single reorganization is O(k · ` · α), the total cost of all node migrations

in a single phase is at most O(k2 · `2 · α). The communication cost itself is equal to the total

weight of all edges, and by the first observation, it is at most
(
k·`
2

)
· α < k2 · `2 · α. Hence for

any phase P (also for the last one), it holds that Det(P) = O(k2 · `2 · α).

Now we lower-bound the cost of Opt on any phase P but the last one. If Opt performs

a node swap in P , it pays 2α. Otherwise its assignment of nodes to clusters is fixed throughout

P . Recall that at the end of P , Det failed to reorganize the nodes. This means that for any

static mapping of the nodes to clusters (in particular the one chosen by Opt), there will be

a saturated intra-cluster edge. The communication cost over such an edge incurred by Opt is at

least α (it can be also strictly greater than α as the edge weight only counts the communication

requests paid by Det).

Therefore, the Det-to-Opt cost ratio in any phase but the last one is at most O(k2 · `2)

and the cost of Det on the last phase is at most O(k2 · `2 · α). Hence, Det(σ) ≤ O(k2 · `2) ·
Opt(σ) +O(k2 · `2 · α) for any input σ.

3.3 Algorithm Crep

In this section, we present the main result of this chapter, a Component-based REPartitioning

algorithm (Crep) which achieves a competitive ratio of O((1+1/ε) ·k log k) with augmentation

2 + ε, for any ε ≥ 1
k (i.e., the augmented cluster is of size at least 2k + 1). Crep maintains a

similar graph structure as the simple deterministic O(k2 · `2)-competitive algorithm from the

previous section, i.e., it keeps counters denoting how many times it paid for a communication

between two nodes. Similarly, at any time t, Crep serves the current request, adjusts its internal

structures, and then possibly migrates nodes. Unlike Det, however, the execution of Crep is

not partitioned into global phases: the reset of counters to zero can occur at different times.

3.3.1 Algorithm Definition

We describe the construction of Crep in two stages. The first stage uses an intermediate

concept of communication components, which are groups of at most k nodes. In the second

stage, we show how components are assigned to clusters, so that all nodes from any single

component are always stored in a single cluster.

Stage 1: Maintaining Components

Roughly speaking, nodes are grouped into components if they communicated a lot recently.

At the very beginning, each node is in a singleton component. Once the cumulative commu-

nication cost between nodes distributed across s components exceeds α · (s− 1), Crep merges

50 CHAPTER 3. VIRTUAL NETWORKS WITH DYNAMIC TOPOLOGY

them into a single component. If a resulting component size exceeds k, it becomes deleted and

replaced by singleton components.

More precisely, the algorithm maintains a time-varying partition of all nodes into compo-

nents. As a helper structure, Crep keeps a complete graph on all k · ` nodes, with an edge

present between each pair of nodes. For each edge between nodes x and y, Crep maintains

its weight wx,y. We say that a communication request is paid (by Crep) if it occurs between

nodes from different clusters, and thus entails a cost for Crep. If x and y belong to the same

component, then wx,y = 0. Otherwise, wx,y is equal to the number of paid communication

requests between x and y since the last time when they were placed in different components by

Crep. It is worth emphasizing that during an execution of Crep, it is possible that wx,y > 0

even when x and y belong to the same cluster.

For any subset of components S = {c1, c2, . . . , c|S|} (called component-set), by w(S) we

denote the total weight of all edges between nodes of S. Note that positive weight edges occur

only between different components of S. We call a component-set trivial if it contains only one

component; w(S) = 0 in such a case.

Initially, all components are singleton components and all edge weights are zero. At time

t, upon a communication request between a pair of nodes x and y, if x and y lie in the same

cluster, the corresponding cost is 0 and Crep does nothing. Otherwise, the cost entailed to

Crep is 1, nodes x and y lie in different clusters (and hence also in different components), and

the following updates of weights and components are performed.

1. Weight increment. Weight wx,y is incremented.

2. Merge actions. We say that a non-trivial component-set S = {ci1 , . . . , ci|S|} is mergeable

if w(S) ≥ (|S| − 1) · α. If a mergeable component-set S exists, then all its components

are merged into a single one. If multiple mergeable component-sets exist, Crep picks

the one with maximum number of components, breaking ties arbitrarily. Weights of all

intra-S edges are reset to zero, and thus intra-component edge weights are always zero. A

mergeable set S induces a sequence of |S|−1 merge actions: Crep iteratively replaces two

arbitrary components from S by a component being their union (this constitutes a single

merge action).

3. Delete action. If the component resulting from merge action(s) has more than k nodes,

it is deleted and replaced by singleton components. Note that weights of edges between

these singleton components are all zero as they have been reset by the preceding merge

actions.

We say that merge actions are real if they are not followed by a delete action (at the same

time point) and artificial otherwise.

Stage 2: Assigning Components to Clusters

At time t, Crep processes a communication request and recomputes components as de-

scribed in the first stage. Recall that we require that nodes of a single component are always

3.3. ALGORITHM CREP 51

stored in a single cluster. To maintain this property for artificial merge actions, no actual

migration is necessary. The property may however be violated by real merge actions. Hence,

in the following, we assume that in the first stage Crep found a mergeable component set

S = {c1, . . . , c|S|} that triggers |S| − 1 merge actions not followed by a delete action.

Crep consecutively processes each real merge action by migrating some nodes. We describe

this process for a single real merge action involving two components cx and cy. As a delete

action was not executed, |cx| + |cy| ≤ k, where |c| denotes the number of component c nodes.

Without loss of generality, |cx| ≤ |cy|.
We may assume that cx and cy are in different clusters as otherwise Crep does nothing.

If the cluster containing cy has |cx| free space, then cx is migrated to this cluster. Otherwise,

Crep finds a cluster that has at most k nodes, and moves both cx and cy there. We call the

corresponding actions component migrations. By an averaging argument, there always exists

a cluster that has at most k nodes, and hence, with (2+ε)-augmentation, component migrations

are always feasible.

3.3.2 Analysis: Structural Properties

We start with a structural property of components and edge weights. It states that im-

mediately after Crep merges (and possibly deletes) a component-set, no other component-set

is mergeable. This property holds independently of the actual placement of components in

particular clusters.

Lemma 11. At any time t, after Crep performs its merge and delete actions (if any), w(S) <

α · (|S| − 1) for any non-trivial component-set S.

Proof. We prove the lemma by an induction on steps. Clearly, the lemma holds before an input

sequence starts as then w(S) = 0 ≤ α − 1 < α · (|S| − 1) for any non-trivial set S. We assume

that it holds at time t− 1 and show it for time t.

At time t, only a single weight, say wx,y, may be incremented. If after the increment, Crep

does not merge any component, then clearly w(S) < α · (|S| − 1) for any non-trivial set S.

Otherwise, at time t, Crep merges a component-set A into a new component cA, and then

possibly deletes cA and creates singleton components from its nodes. We show that the lemma

statement holds then for any non-trivial component-set S. We consider three cases.

1. Component-sets A and S do not share any common node. Then, A and S consist only of

components that were present already right before time t and they are all disjoint. The

edge (x, y) involved in communication at time t is contained in A, and hence does not

contribute to the weight of w(S). By the inductive assumption, w(S) < α · (|S| − 1) held

right before time t. As w(S) is not affected by Crep actions at step t, the inequality

holds also right after time t.

2. Crep does not delete cA and cA ∈ S. Let X = S \ {cA}. Let w(A,X) denote the total

weight of all edges with one endpoint in A and another in X. As Crep merged component-

set A and did not merge component-set A]X, A was mergeable (w(A) ≥ α · (|A| − 1)),

52 CHAPTER 3. VIRTUAL NETWORKS WITH DYNAMIC TOPOLOGY

while A] X was not, i.e., w(A) + w(A,X) + w(X) = w(A] X) < α · (|A| + |X| − 1).

Therefore, w(A,X) + w(X) < α · |X| right after weight wx,y is incremented at time t.

Observe that when component-set A is merged and all intra-A edges have their weights

reset to zero, neither w(A,X) nor w(X) is affected. Therefore after Crep merges A into

cA, w(S) = w(A,X) + w(X) < α · |X| = α · (|S| − 1).

3. Crep deletes cA creating singleton components d1, d2, . . . , dr and some of these compo-

nents belong to set S. This time, we define X to be the set S without these components

(X might be also an empty set). In the same way as in the previous case, we may show

that w(A,X) +w(X) < α · |X| after Crep performs merge and delete operations. Hence,

at this time w(S) ≤ w(A,X) +w(X) < α · |X| ≤ α · (|S| − 1). The last inequality follows

as S has strictly more components than X.

Since only one request is given at a time, and since all weights and α are integers, 11

immediately implies the following result.

Corollary 1. Fix any time t and consider weights right after they are updated by Crep, but

before Crep performs merge actions. Then, w(S) ≤ (|S| − 1) · α for any component-set S. In

particular, w(S) = (|S| − 1) · α for a mergeable component-set S.

3.3.3 Analysis: Lower Bound on OPT

For estimating the cost of Opt, we pick any input sequence σ and we execute Crep on

it. Then, we execute Opt on σ and we analyze its cost in terms of the number of merges and

deletions performed by Crep. We split any swap of two nodes performed by Opt into two

migrations of the corresponding nodes.

For any component c maintained by Crep, let τ(c) be the time of its creation. A non-

singleton component c is created at τ(c) by the merge of a component-set, henceforth denoted

by S(c). For a singleton component, τ(c) is the time when the component that previously

contained the sole node of c was deleted; τ(c) = 0 if c existed at the beginning of input σ. We

will use time 0 as an artificial time point that occurred before an actual input sequence.

For a non-singleton component c, we define F (c) as the set of the following (node, time)

pairs:

F (c) =
⊎

b∈S(c)

{b} × {τ(b) + 1, . . . , τ(c)} .

Intuitively, F (c) tracks the history of all nodes of c from the time (exclusively) they started

belonging to some previous component b, until the time (inclusively) they become members of

c. Note that for any two components c1, c2, sets F (c1) and F (c2) are disjoint. The union of all

F (c) (over all components c) cover all possible node-time pairs (except for time zero).

For a given component c, we say that a communication request between nodes x and y at

time t is contained in F (c) if both (x, t) ∈ F (c) and (y, t) ∈ F (c). Note that only the requests

contained in F (c) could contribute towards later creation of c by Crep. In fact, by 1, the

number of these requests that entailed an actual cost to Crep is exactly (|S(c)| − 1) · α.

3.3. ALGORITHM CREP 53

We say that a migration of node x performed by Opt at time t is contained in F (c) if

(x, t) ∈ F (c). For any component c, we define Opt(c) as the cost incurred by Opt due to

requests contained in F (c), plus the cost of Opt migrations contained in F (c). The total cost

of Opt can then be lower-bounded by the sum of Opt(c) over all components c. (The cost of

Opt can be larger as
∑

c Opt(c) does not account for communication requests not contained

in F (c) for any component c.)

Lemma 12. Fix any component c and partition S(c) into a set of g ≥ 2 disjoint component-

sets S1, S2, . . . , Sg. The number of communication requests in F (c) that are between sets Si is

at least (g − 1) · α.

Proof. Let w be the weight measured right after its increment at time τ(c). Observe that the

number of all communication requests from F (c) that were between sets Si and that were paid

by Crep is w(S(c)) −∑g
i=1w(Si). It suffices to show that this amount is at least (g − 1) · α.

By 1, w(S(c)) = (|S(c)| − 1) · α and w(Si) ≤ (|Si| − 1) · α. Therefore, w(S(c))−∑g
i=1w(Si) ≥

(|S(c)| − 1) · α−∑g
i=1(|Si| − 1) · α = (g − 1) · α.

For any component c maintained by Crep, let Yc denote set of clusters containing nodes of c

in the solution of Opt after Opt performs its migrations (if any) at time τ(c). In particular, if

τ(c) = 0, then Yc consists of only one cluster that contained the sole node of c at the beginning

of an input sequence.

Lemma 13. For any non-trivial component c, it holds that

Opt(c) ≥ (|Yc| − 1) · α−
∑
b∈S(c)

(|Yb| − 1) · α .

Proof. Fix a component b ∈ S(c) and any node x ∈ b. Let opt-mig(x) be the number of Opt

migrations of node x at times t ∈ {τ(b) + 1, . . . , τ(c)}. Furthermore, let Y ′x be the set of clusters

that contained x at some moment of a time t ∈ {τ(b) + 1, . . . , τ(c)} (in the solution of Opt).

We extend these notions to components: opt-mig(b) =
∑

x∈b opt-mig(x) and Y ′b =
⋃
x∈b Y

′
x.

Observe that |Y ′b | ≤ |Yb|+ opt-mig(b).

We aggregate components of S(c) into component-sets called bundles, so that any two bun-

dles have their nodes always in disjoint clusters. To this end, we construct a hypergraph, whose

nodes correspond to clusters from
⋃
b∈S(c) Y

′
b . Each component b ∈ S(c) defines a hyperedge

that connects all nodes (clusters) that are in Y ′b . Now we look at connected components of

this hypergraph (called hypergraph parts to avoid ambiguity). As the hyperedge related to

component b connects |Y ′b | nodes, there are

B ≥ |⋃b∈S(c) Y
′
b | −

∑
b∈S(c)(|Y ′b | − 1)

≥ |Yc| −
∑

b∈S(c)(|Yb| − 1)−∑b∈S(c) opt-mig(b)

hypergraph parts. Each hypergraph part corresponds to a bundle consisting of components

contained in clusters belonging to this part, i.e., the number of bundles is also B.

By 12, the number of communication requests in F (c) that are between different bun-

dles is at least (B − 1) · α. Each such request is paid by Opt because, by the definition of

54 CHAPTER 3. VIRTUAL NETWORKS WITH DYNAMIC TOPOLOGY

bundles, it involves a communication between two nodes which Opt stored in different clus-

ters. Additionally, Opt(c) involves
∑

b∈S(c) opt-mig(b) node migrations in F (c), and therefore

Opt(c) ≥ (B − 1) · α+
∑

b∈S(c) opt-mig(b) · α ≥ (|Yc| − 1) · α−∑b∈S(c)(|Yb| − 1) · α.

Lemma 14. For any input σ, let del(σ) be the set of components that were eventually deleted

by Crep. Then Opt(σ) ≥∑c∈del(σ) |c|/(2k) · α.

Proof. Fix any component c ∈ del(σ). Consider a tree T (c) which describes how component c

was created: the leaves of T (c) are singleton components containing nodes of c, the root is c

itself, and each internal node corresponds to a component created at a single time by merging

its children.

We now sum Opt(b) over all components b from T (c), including the root c and the leaves

L(T (c)). The lower bound given by 13 sums telescopically, i.e.,∑
b∈T (c) Opt(b) ≥ (|Yc| − 1) · α−∑b∈L(T (c))(|Yb| − 1) · α

= (|Yc| − 1) · α ,

where the equality follows as any b ∈ L(T (c)) is a singleton component, and therefore |Yb| = 1.

As c has |c| nodes, it has to span at least d|c|/ke clusters of Opt, and therefore
∑

b∈T (c) Opt(b) ≥
(d|c|/ke − 1) ·α ≥ |c|/(2k) ·α, where the second inequality follows because c ∈ del(σ) and thus

|c| > k.

The proof is concluded by observing that, for any two deleted components c1 and c2, the

corresponding trees T (c1) and T (c2) do not share common components, and therefore Opt(σ) ≥∑
c∈del(σ)

∑
b∈T (c) Opt(b) ≥∑c∈del(σ) |c|/(2k).

3.3.4 Analysis: Upper Bound on CREP

To bound the cost of Crep, we fix any input σ and introduce the following notions. LetM(σ)

be the sequence of merge actions (real and artificial ones) performed by Crep. For any real

merge action m ∈ M(σ), by size(m) we denote the size of the smaller component that was

merged. For an artificial merge action, we set size(m) = 0.

Recall that del(σ) denotes the set of all components that become eventually deleted by

Crep. Let final(σ) be the set of all components that exist when Crep finishes sequence σ.

Note that w(final(σ)) is the total weight of all edges after processing σ.

We split Crep(σ) into two parts: the cost of serving requests, Crepreq(σ), and the cost of

node migrations, Crepmig(σ).

Lemma 15. For any input σ, Crepreq(σ) = |M(σ)| · α+ w(final(σ)).

Proof. The proof follows by an induction on all requests of σ. Whenever Crep pays for the

communication request, the corresponding edge weight is incremented and both sides increase

by 1. At a time when s components are merged, s − 1 merge actions are executed and the

sum of all edge weights decreases exactly by (s − 1) · α. Then, the value of both sides remain

unchanged.

3.3. ALGORITHM CREP 55

Lemma 16. For any input σ, with (2 + ε)-augmentation,

Crepmig(σ) ≤ (1 + 4/ε) · α ·
∑

m∈M(σ)

size(m) .

Proof. If Crep has more than 2k nodes in cluster Vi (for i ∈ {1, . . . , `}), then we call this

excess overflow of Vi; otherwise, the overflow of Vi is zero. We denote the overflow of cluster Vi

measured right after processing sequence σ by ovrσ(Vi). It is sufficient to show the following

relation for any sequence σ:

Crepmig(σ) +
∑̀
j=1

(4/ε) · α · ovrσ(Vj) ≤ (1 + 4/ε) · α ·
∑

m∈M(σ)

size(m) . (3.1)

As the second summand of (3.1) is always non-negative, (3.1) will imply the lemma.

The proof will follow by an induction on all requests in σ. Clearly, (3.1) holds trivially at

the beginning, as there are no overflows, and thus both sides of (3.1) are zero. Assume that

(3.1) holds for a sequence σ and we show it for sequence σ ∪ {r}, where r is some request.

We may focus on request r that triggers component(s) migration as otherwise (3.1) holds

trivially. Such a migration is triggered by a real merge action m of two components cx and cy.

We assume that |cx| ≤ |cy|, and hence size(m) = |cx|. Note that |cx| + |cy| ≤ k, as otherwise

the resulting component would be deleted and no migration would be performed.

Let Vx and Vy denote the cluster that held components cx and cy, respectively, and Vz be

the destination cluster for cx and cy (it is possible that Vz = Vy). For any cluster V , we denote

the change in its overflow by ∆ovr(V) = ovrσ∪{r}(V)−ovrσ(V). It suffices to show that the

change of the left hand side of (3.1) is at most the increase of its right hand side, i.e.,

Crepmig(r) +
∑

V ∈{Vx,Vy ,Vz}
(4/ε) · α ·∆ovr(V) ≤ (1 + 4/ε) · |cx| · α . (3.2)

For the proof, we consider three cases.

1. Vy had at least |cx| empty slots. In this case, Crep simply migrates cx to Vy paying |cx|·α.

Then, ∆ovr(Vx) ≤ 0, ∆ovr(Vy) ≤ |cx|, Vz = Vy, and thus (3.2) follows.

2. Vy had less than |cx| empty slots and |cy| ≤ (2/ε) · |cx|. Crep migrates both cx and cy

to component Vz and the incurred cost is Crepmig(r) = (|cx|+|cy|)·α ≤ (1+2/ε)·|cx|·α <
(1+4/ε)·|cx|·α. It remains to show that the second summand of (3.2) is at most 0. Clearly,

∆ovr(Vx) ≤ 0 and ∆ovr(Vy) ≤ 0. Furthermore, the number of nodes in Vz was at most k

before the migration by the definition of Crep, and thus is at most k + |cx| + |cy| ≤ 2k

after the migration. This implies that ∆ovr(Vz) = 0− 0 = 0.

3. Vy had less than |cx| empty slots and |cy| > (2/ε) · |cx|. As in the previous case, Crep

migrates cx and cy to component Vz, paying Crepmig(r) = (|cx| + |cy|) · α < 2 · |cy| · α.

This time, Crepmig(r) can be much larger than the right hand side of (3.2), and thus we

will resort to showing that the second summand of (3.2) is at most −2 · |cy| · α.

As in the previous case, ∆ovr(Vx) ≤ 0 and ∆ovr(Vz) = 0. Observe that |cx| < (ε/2) ·
|cy| ≤ (ε/2) ·k. As the migration of |cx| to Vy was not possible, the initial number of nodes

56 CHAPTER 3. VIRTUAL NETWORKS WITH DYNAMIC TOPOLOGY

in Vy was greater than (2+ε) ·k−|cx| ≥ (2+ε/2) ·k, i.e., ovrσ(Vy) ≥ (ε/2) ·k ≥ (ε/2) · |cy|.
As component cy was migrated out of Vy, the number of overflow nodes in Vy changes by

∆ovr(Vy) = −min {ovrσ(Vy), |cy| } ≤ −(ε/2) · |cy| .

Therefore, the second summand of (3.2) is at most (4/ε) · α · ∆ovr(Vy) ≤ −(4/ε) · α ·
(ε/2) · |cy| = −2 · |cy| · α as desired.

3.3.5 Analysis: Competitive Ratio

In the previous two subsections, we related Opt(σ) to the total size of components that are

deleted by Crep (cf. 14) and Crep(σ) to
∑

m∈M(σ) size(m), where the latter amount is related

to the merging actions performed by Crep (cf. 16). Now we will link these two amounts. Note

that each delete action corresponds to preceding real merge actions that led to the creation of

the eventually deleted component.

Lemma 17. For any input σ, it holds that∑
m∈M(σ)

size(m) ≤
∑

c∈del(σ)

|c| · log k +
∑

c∈final(σ)

|c| · log |c| ,

where all logarithms are binary.

Proof. We prove the lemma by an induction on all requests of σ. At the very beginning, both

sides of the lemma inequality are zero, and hence the induction basis holds trivially. We assume

that the lemma inequality is preserved for a sequence σ and we show it for sequence σ ∪ {r},
where r is an arbitrary request. We may assume that r triggers some merge actions, otherwise

the claim follows trivially.

First, assume r triggered a sequence of real merge actions. We show that the lemma in-

equality is preserved after processing each merge action. Let cx and cy be merged components,

with sizes p = |cx| and q = |cy|, where p ≤ q without loss of generality. Due to such action, the

right hand side of the lemma inequality increases by

(p+ q)· log(p+ q)− p · log p− q · log q

= p · (log(p+ q)− log p) + q · (log(p+ q)− log q)

≥ p · log(p+ q)/p

≥ p · log 2 = p .

As the left hand side of the inequality changes exactly by p, the inductive hypothesis holds.

Second, assume r triggered a sequence of artificial merge actions (i.e., followed by a delete

action) and let c1, c2, . . . , cg denote components that were merged to create component c that was

immediately deleted. Then, the right hand side of the lemma inequality changes by −∑g
i=1 |ci| ·

log |ci| + |c| · log k ≥ −∑g
i=1 |ci| · log k + |c| · log k = 0. As the left hand side of the lemma

inequality is unaffected by artificial merge actions, the inductive hypothesis follows also in this

case.

3.4. ONLINE REMATCHING 57

Theorem 7. With augmentation at least 2 + ε, Crep is O((1 + 1/ε) · k · log k)-competitive.

Proof. Fix any input sequence σ. By 15 and 16,

Crep(σ) = Crepmig(σ) + Crepreq(σ)

≤ (1 + 4/ε) · α ·∑m∈M(σ) size(m) + |M(σ)| · α+ w(final(σ)) .

Regarding a bound for |M(σ)|, we observe the following. First, if Crep executes artificial

merge actions, then they are immediately followed by a delete action of the resulting component

c. The number of artificial merge actions is clearly at most |c|−1 ≤ |c|, and thus the total number

of all artificial actions in M(σ) is at most
∑

c∈del(σ) |c|. Second, if Crep executes a real merge

action m, then size(m) ≥ 1. Combining these two bounds yields |M(σ)| ≤∑m∈M(σ) size(m)+∑
c∈del(σ) |c|. We use this inequality and later apply 17 to bound

∑
m∈M(σ) size(m) obtaining

Crep(σ)− w(final(σ))

≤ (1 + 4/ε) · α ·∑m∈M(σ) size(m) + |M(σ)| · α
≤ (2 + 4/ε) · α ·∑m∈M(σ) size(m) + α ·∑c∈del(σ) |c|

≤ (2 + 4/ε) · α ·
(∑

c∈del(σ) |c| · log k +
∑

c∈final(σ) |c| · log |c|
)

+ α ·∑c∈del(σ) |c|

≤ (3 + 4/ε) · α ·∑c∈del(σ) |c| · log k + (2 + 4/ε) · α ·∑c∈final(σ) |c| · log |c| .

By 14,
∑

c∈del(σ) |c| · α ≤ 2k ·Opt(σ). This yields

Crep(σ) ≤ O(1 + 1/ε) · k · log k ·Opt(σ) + β ,

where

β = O(1 + 1/ε) · α ·
∑

c∈final(σ)

|c| · log |c|+ w(final(σ)) .

To bound β, observe that the component-set final(σ) contains at most k · ` components, and

hence by 11, w(final(σ)) < k · ` · α. Furthermore, the maximum of
∑

c∈final(σ) |c| · log |c| is

achieved when all nodes in a specific cluster constitute a single component. Thus,
∑

c∈final(σ) |c|·
log |c| ≤ ` · ((2 + ε) · k) · log((2 + ε) · k) = O(` · k · log k). In total, β = O((1 + 1/ε) ·α · ` · k · log k),

i.e., it can be upper-bounded by a constant independent of input sequence σ, which concludes

the proof.

3.4 Online Rematching

Let us now consider the special case where clusters are of size two (k = 2, arbitrary `).

This can be viewed as an online maximal (re)matching problem: clusters of size two contain

(“match”) exactly one pair of nodes, and maximizing pairwise communication within each

cluster is equivalent to minimizing inter-cluster communication.

58 CHAPTER 3. VIRTUAL NETWORKS WITH DYNAMIC TOPOLOGY

3.4.1 Greedy Algorithm

We define a natural greedy online algorithm Greedy, parameterized by a real positive

number λ. Similarly to our other algorithms, Greedy maintains an edge weight for each pair

of nodes. The weights of all edges are initially zero. Weights of intra-cluster edges are always

zero and weights of inter-cluster edges are related to the number of paid communication requests

between edge endpoints.

When facing an inter-cluster request between nodes x and y, Greedy increments the weight

w(e), where e = (x, y). Let x′ and y′ be the nodes collocated with x and y, respectively. If

after the weight increase, it holds that w(x, y) +w(x′, y′) ≥ λ · α, Greedy performs a swap: it

places x and y in one cluster and x′ and y′ in another; afterwards it resets the weights of edges

(x, y) and (x′, y′) to 0. Finally, Greedy pays for the request between x and y. Note that if the

request triggered a migration, then Greedy does not pay its communication cost.

3.4.2 Analysis

We use E to denote the set of all edges. Let MGR (MOPT) denote the set of all edges

e = (u, v), such that u and v are collocated by Greedy (Opt). Note that MGR and MOPT

are perfect matchings on the set of all nodes.

For the analysis, we associate the following edge-potential with any edge e:

Φ(e) =

0 if e ∈MGR,

−w(e) if e ∈MOPT \MGR,

f · w(e) if e /∈MOPT and e /∈MGR,

where f ≥ 0 is a constant that will be defined later.

The union of MGR and MOPT constitutes a set of alternating cycles: an alternating cycle

of length 2j (for some j ≥ 1) consists of 2j nodes, j edges from MGR and j edges from

MOPT, interleaved. The case j = 1 is degenerate: such a cycle consists of a single edge from

MGR ∩MOPT, but we still count it as a cycle of length 2. We define the cycle-potential as

Ψ = −C · g · α,

where C is the number of all cycles and g ≥ 0 is a constant that will be defined later.

To simplify the analysis, we slightly modify the way weights are increased by Greedy. The

modification is applied only when the weight increment triggers a node migration. Recall that

this happens when there is an inter-cluster request between nodes x and y. The corresponding

weight w(x, y) is then increased by 1. After the increase, it holds that w(x, y)+w(x′, y′) ≥ λ ·α.

(Nodes x′ and y′ are those collocated with x and y, respectively.) Instead, we increase w(x, y)

possibly by a smaller amount, so that w(x, y)+w(x′, y′) becomes equal to λ·α. This modification

allows for a more streamlined analysis and is local: before and after the modification, Greedy

performs a migration and right after that it resets weight w(x, y) to zero.

We split processing of a communication request (x, y) into three stages. In the first stage,

Opt performs an arbitrary number of migrations. In the second stage, weight w(x, y) is in-

creased accordingly and both Opt and Greedy serve the request. It is possible that the weight

3.4. ONLINE REMATCHING 59

increase triggers a node swap of Greedy, in which case its serving cost is zero. Finally, in the

third stage, Greedy may perform a node swap.

We will show that for an appropriate choice of λ, f and g, for all three stages described

above the following inequality holds:

∆Greedy + ∆Ψ +
∑

e∈E ∆Φ(e) ≤ 7 ·∆Opt . (3.3)

Here, ∆Greedy and ∆Opt denote the increases of Greedy’s and Opt’s cost, respectively.

∆Ψ and ∆Φ(e) are the changes of the potentials Ψ and Φ(e). The 7-competitiveness then imme-

diately follows from summing (3.3) and bounding the initial and final values of the potentials.

Lemma 18. If 2 · (f + 1) · λ+ g ≤ 14, then (3.3) holds for the first stage.

Proof. We consider any node swap performed by Opt. Clearly, for such an event ∆Greedy = 0

and ∆Opt = 2 · α. The number of cycles decreases at most by one, and thus ∆Ψ ≤ g · α.

We will now upper-bound the change in the edge-potentials. Let eold
1 and eold

2 be the edges

that were removed from MOPT by the swap and let enew
1 and enew

2 be the edges added to MOPT.

For any i ∈ {1, 2}, ∆Φ(enew
i) ≤ 0 as the initial value of Φ(enew

i) is at least 0 and the final value

of Φ(enew
i) is at most 0. Similarly, ∆Φ(eold

i) ≤ (f + 1) · w(eold
i) as the initial value of Φ(eold

i) is

at least −w(eold
i) and the final value of Φ(eold

i) is at most f · w(eold
i).

Summing up,
∑

e∈E ∆Φ ≤ (f + 1) · (w(eold
1) + w(eold

2)) ≤ 2 · (f + 1) · λ · α as the weight of

each edge is at most λ · α. By combining the bounds above and using the lemma assumption,

we obtain ∆Greedy +
∑

e∈E ∆Φ(e) + ∆Ψ ≤ 0 + 2 · (f + 1) · λ ·α+ g ·α ≤ 14 ·α = 7 ·∆Opt.

Lemma 19. If f ≤ 6, then (3.3) holds for the second stage.

Proof. In this stage, both Greedy and Opt serve a communication request between nodes

x and y. Let ec = (x, y). As neither Greedy nor Opt migrates any nodes in this stage, the

structure of alternating cycles remains unchanged, i.e., ∆Ψ = 0. Furthermore, only edge ec may

change its weight, and therefore, among all edges, only the edge-potential of ec may change.

We consider two cases.

1. If ec ∈ MGR, then ∆Greedy = 0 and ∆Opt ≥ 0. As w(ec) is unchanged, ∆Φ(ec) = 0,

and therefore ∆Greedy + ∆Φ(ec) = 0 = ∆Opt.

2. If ec /∈MGR, then let ∆w(ec) ≤ 1 denote the increase of the weight of edge ec. Note that

∆Greedy ≤ ∆w(ec): either no migration is triggered and ∆Greedy = ∆w(ec) = 1 or a

migration is triggered and then Greedy does not pay for the request.

If ec ∈ MOPT, then ∆Opt = 0 and ∆Φ(ec) = −w(ec). Thus, ∆Greedy + ∆Φ(ec) ≤
0 = ∆Opt. Otherwise, ec /∈ MOPT, in which case ∆Opt = 1. Furthermore ∆Φ(ec) =

f ·∆w(ec), and thus ∆Greedy + ∆Φ(ec) = (f + 1) · w(ec) ≤ f + 1 = (f + 1) ·∆Opt.

Therefore, in the second stage, ∆Greedy + ∆Ψ +
∑

e∈E ∆Φ(e) ≤ (f + 1) · ∆Opt, which

implies (3.3) as we assumed f ≤ 6.

Lemma 20. If 2 + λ ≤ g ≤ f · λ− 2, then (3.3) holds for the third stage.

60 CHAPTER 3. VIRTUAL NETWORKS WITH DYNAMIC TOPOLOGY

x y

x′ y′

a) x

y

x′

y′

b) x

y

x′

y′

c)

Figure 3.1: Three cases in the analysis of the third stage (a swap performed by Greedy). Solid edges denote

edges that were removed from MGR because of the swap, dashed ones denote the ones that were added to MGR.

Dotted paths denote the remaining parts of the involved alternating cycle(s).

Proof. In the third stage (if it is present), Greedy performs a swap. Clearly, for such an event

∆Greedy = 2 · α and ∆Opt = 0.

There are four edges involved in a swap: let (x, x′) and (y, y′) be the edges that were in

MGR before the swap and let (x, y) and (y, y′) be the new edges in MGR after the swap. Note

that w(x, x′) = w(y, y′) = 0 before and after the swap. By the definition of Greedy and our

modification of weight updates, w(x, y) + w(x′, y′) = λ · α before the swap, and after the swap

these weights are reset to zero.

For any edge e, let wS(e) and ΦS(e) denote the weight and the edge-potential of e right

before the swap. By the bounds above, ∆Greedy +
∑

e∈E ∆Φ(e) + ∆Ψ = 2 · α − ΦS(x, y) −
ΦS(x′, y′) + ∆Ψ, and hence to show (3.3) it suffices to show that the latter amount is at most

7 ·∆Opt = 0. We consider three cases.

1. Assume that edges (x, x′) and (y, y′) were in different alternating cycles before the swap,

see 3.1a. Then the number of alternating cycles decreases by one, and hence ∆Ψ = g · α.

Let C be the cycle that contained edge (x, x′). Node x is adjacent to an edge from C that

belongs to MOPT. (It is possible that this edge is (x, x′); this occurs in the degenerate

case when C is of length 2.) As MOPT is a matching, (x, y) /∈ MOPT. Analogously,

(x′, y′) /∈ MOPT. Therefore, ΦS(x, y) + ΦS(x′, y′) = f · w(x, y) + f · w(x′, y′) = f · λ · α.

Using the lemma assumption, ∆Greedy +
∑

e∈E ∆Φ(e) + ∆Ψ = (2 + g − f · λ) · α ≤ 0.

2. Assume that edges (x, x′) and (y, y′) belonged to the same cycle and it contained the nodes

in the order x, x′, . . . , y, y′, . . ., see 3.1b. In this case it holds that ∆Ψ = 0, since the number

of alternating cycles is unaffected by the swap. By similar reasoning as in the previous

case, neither (x, y) nor (x′, y′) belong to MOPT, and thus again, ΦS(x, y) + ΦS(x′, y′) =

f · w(x, y) + f · w(x′, y′) = f · λ · α. In this case, ∆Greedy +
∑

e∈E ∆Φ(e) + ∆Ψ =

(2− f · λ) · α ≤ (2 + g − f · λ) · α ≤ 0.

3. Assume that edges (x, x′) and (y, y′) belonged to the same cycle and it contained the

nodes in the order x, x′, . . . , y′, y, . . ., see 3.1c. When the swap is performed, the number

of alternating cycles decreases, and thus ∆Ψ = −g · α. Unlike the previous cases, here

it is possible that (x, y) and (x′, y′) belong to MOPT. But even in such a case, we may

lower-bound the initial values of the corresponding edge-potentials: ΦS(x, y)+ΦS(x′, y′) ≥
−wS(x, y)−wS(x′, y′) = −λ ·α. Using the lemma assumption, ∆Greedy+

∑
e∈E ∆Φ(e)+

∆Ψ = (2− g + λ) · α ≤ 0.

3.5. LOWER BOUNDS 61

Theorem 8. For λ = 4/5, Greedy is 7-competitive.

Proof. We choose f = 6 and g = 14/5. The chosen values of λ, f and g satisfy the conditions

of 19, 20 and 18. Summing these inequalities over all stages occurring while serving an input

sequence σ yields

Greedy(σ) + (Ψfinal −Ψinitial) +
∑

e∈E (Φfinal(e)− Φinitial(e)) ≤ 7 ·Opt(σ) ,

where Ψfinal and Φfinal(e) denote the final values of the potentials and Ψinitial and Φinitial(e)

their initial values. We observe that all the potentials occurring in the inequality above are

lower-bounded and upper-bounded by values that are independent of the input sequence σ.

That is, Ψfinal − Ψinitial ≥ −g · ` · α (as the number of alternating cycles is at most `) and

Φfinal(e)−Φinitial(e) ≥ −(f + 1) ·w(e) ≥ −(f + 1) · λ ·α (as all edge weights are always at most

λ · α). The number of edges is exactly
(

2·`
2

)
, and therefore

Greedy(σ) ≤ 7 ·Opt(σ) + g · ` · α+
(

2·`
2

)
· (f + 1) · λ · α

≤ 7 ·Opt(σ) +O(`2 · α) .

This concludes the proof.

3.5 Lower Bounds

In order to shed light on the optimality of the presented online algorithm, we next investigate

lower bounds on the competitive ratio achievable by any (deterministic) online algorithm. We

start by showing a reduction of the BRP problem to online paging, which will imply that

already for two clusters the competitive ratio of the problem is at least k − 1. We strengthen

this bound, providing a lower bound of k that holds for any amount of augmentation, as long

as the augmentation does not allow to put all nodes in a single cluster. The proof uses the

averaging argument. We refine this approach for a special case of online rematching (k = 2

without augmentation), for which we present a lower bound of 3.

3.5.1 Lower Bound by Reduction to Online Paging

Theorem 9. Fix any k. If there exist a γ-competitive deterministic algorithm B for BRP for

two clusters, each of size k, then there exists a γ-competitive deterministic algorithm P for the

paging problem with cache size k − 1 and where the number of different pages is k.

Proof. The pages are denoted by p1, p2, . . . , pk. Without loss of generality, we assume that the

initial cache is equal to p1, p2, . . . , pk−1. We fix any input sequence σP = σP1 , σ
P
2 , σ

P
3 , . . . for

the paging problem, where σPt denotes the t-th accessed page. We show how to construct, in

an online manner, an online algorithm P for the paging problem that operates in the following

way. It internally runs the algorithm B, starting on the initial assignment of nodes to clusters

that will be defined below. For a requested page σPt , it creates a subsequence of communication

requests for the BRP problem, runs B on them, and serves σPt on the basis of B’s responses.

62 CHAPTER 3. VIRTUAL NETWORKS WITH DYNAMIC TOPOLOGY

We use the following 2k nodes for the BRP problem: paging nodes p1, p2, . . . , pk, auxiliary

nodes a1, a2, . . . , ak−1, and a special node s. We say that the node clustering is well aligned if

one cluster contains the node s and k−1 paging nodes, and the other cluster contains one paging

node and all auxiliary nodes. There is a natural bijection between possible cache contents and

well aligned configurations: the cache consists of the k − 1 paging nodes that are in the same

cluster as node s. (Without loss of generality, we may assume that the cache of any paging

algorithm is always full, i.e., consists of k− 1 pages.) If the configuration c of a BRP algorithm

is well aligned, cache(c) denotes the corresponding cache contents.

The initial configuration for the BRP problem is the well aligned configuration corresponding

to the initial cache (pages p1, p2, . . . , pk−1 in the cache).

For any paging node p, let comm(p) be a subsequence of communication requests for the

BRP problem, consisting ot the request (p, s), followed by
(
k−1

2

)
requests to all pairs of auxiliary

nodes. Given an input sequence σP for online paging, we construct the input sequence σB for

the BRP problem in the following way: For a request σPt , we repeat a subsequence comm(σPt)

till the node clustering maintained by B becomes well aligned and σPt becomes collocated

with s. Note that B must eventually achieve such a node configuration: otherwise its cost

would be arbitrarily large while a sequence of repeated comm(σPt) subsequences can be served

at a constant cost—the competitive ratio of B would then be unbounded. We denote the

resulting sequence of comm(σPt) subsequences by commt(σ
P
t).

To construct the response to the paging request σPt , the algorithm P runs B on commt(σ
P
t).

Right after processing commt(σ
P
t), node configuration c of B is well aligned and σPt is collocated

with s. Hence, P may change its cache configuration to cache(c): such a response is feasible

because since σPt is collocated with s, it is included by P in the cache. Furthermore, we may

relate the cost of P to the cost of B: If P modifies the cache contents, the corresponding cost

is 1, as exactly one page has to be fetched. Such a change occurs only if B changed node

placement in clusters (at a cost of at least 2 · α). Therefore, 2 · α · P (σPt) ≤ B(commt(σ
P
t)),

which summed over all requests from sequence σP yields 2 · α · P (σP) ≤ B(σB).

Now we show that there exists an (offline) solution Off to σB, whose cost is exactly 2 ·
α · Opt(σP). Recall that, for a paging request σPt , σB contains the corresponding sequence

commt(σ
P
t). Before serving the first request of commt(σ

P
t), Off changes its state to a well

aligned configuration corresponding to the cache of Opt right after serving paging request σPt .

This ensures that the subsequence commt(σ
P
t) is free for Off. Furthermore, the cost of node

migration of Off is 2α (two paging nodes are swapped) if Opt performs a fetch, and 0 if Opt

does not change its cache contents. Therefore, Off(commt(σ
P
t)) = 2 · α · Opt(σPt), which

summed over the entire sequence σP yields Off(σB) = 2 · α ·Opt(σP).

As B is ρ-competitive for the BRP problem, there exists a constant β, such that for any

sequence σP and the corresponding sequence σB, it holds that B(σB) ≤ γ · Opt(σB) + β.

Combining this inequality with proven relations between P and B and between Off and Opt

yields

2 · α · P (σP) ≤ B(σB) ≤ γ ·Opt(σB) + β ≤ γ ·Off(σB) + β = γ · 2 · α ·Opt(σP) + β ,

and therefore P is γ-competitive.

3.5. LOWER BOUNDS 63

As any deterministic algorithm for the paging problem with cache size k−1 has a competitive

ratio of at least k − 1 [ST85a], we obtain the following result.

Corollary 2. The competitive ratio of the BRP problem on two clusters is at least k − 1.

3.5.2 Additional Lower Bounds

Theorem 10. No δ-augmented deterministic online algorithm Onl can achieve a competitive

ratio smaller than k, as long as δ < ` .

Proof. In our construction, all nodes are numbered from v0 to vn−1. All presented requests are

edges in a ring graph on these nodes with edge ei defined as (vi, v(i+1) mod n) for i = 0, . . . , n−1.

At any time, the adversary gives a communication request between an arbitrary pair of nodes

not collocated by Onl. As δ < `, Onl cannot fit the entire ring in a single cluster, and hence

such pair always exists. Such a request entails a cost of at least 1 for Onl. This way, we may

define an input sequence σ of an arbitrary length, such that Onl(σ) ≥ |σ|.
Now we present k offline algorithms Off1,Off2, . . . ,Offk, such that, neglecting an initial

node reorganization that they will perform before the input sequence starts, the sum of their

total costs on σ is exactly |σ|. Toward this end, for any j ∈ {0, . . . , k − 1}, we define a set

cut(j) = {ej , ej+k, ej+2k, . . . , ej+(`−1)·k}. For any j, set cut(j) defines a natural partitioning

of all nodes into clusters, each containing k nodes. Before processing σ, the algorithm Offj

first migrates its nodes (paying at most n · α) to the clustering defined by cut(j) and then

never changes the node placement.

As all sets cut(j) are pairwise disjoint, for any request σt, exactly one algorithm Offj pays

for the request, and thus
∑k

j=1 Offj(σt) = 1. Therefore, taking the initial node reorganization

into account, we obtain that
∑k

j=1 Offj(σ) ≤ k · n · α + Onl(σ). By the averaging argument,

there exists offline algorithm Offj , such that Offj(σ) ≤ 1
k ·
∑k

j=1 Offj(σ) ≤ n ·α+Onl(σ)/k.

Thus, Onl(σ) ≥ k ·Offj(σ) − k · n · α ≥ k ·Opt(σ) − k · n · α. The theorem follows because

the additive constant k · n · α becomes negligible as the length of σ grows.

Theorem 11. No deterministic online algorithm Onl can achieve a competitive ratio smaller

than 3 for the case k = 2 (without augmentation).

Proof. As in the previous proof, we number the nodes from v0 to vn−1. We distinguish three

types of node clusterings. Configuration A: v0 collocated with v1, v2 collocated with v3, other

nodes collocated arbitrarily; configuration B: v1 collocated with v2, v3 collocated with v0, other

nodes collocated arbitrarily; configuration C: all remaining clusterings.

Similarly to the proof of 10, the adversary always requests a communication between two

nodes not collocated by Onl. This time the exact choice of such nodes is relevant: Onl receives

request to (v1, v2) in configuration A, and to (v0, v1) in configurations B and C.

We define three offline algorithms. They will keep nodes {v0, . . . , v3} in the first two clusters

and the remaining nodes in the remaining clusters (the remaining nodes will never change

their clusters). More concretely, Off1 keeps nodes {v0, . . . , v3} always in configuration A and

Off2 always in configuration B. Furthermore, we define the third algorithm Off3 that is in

64 CHAPTER 3. VIRTUAL NETWORKS WITH DYNAMIC TOPOLOGY

configuration B if Onl is in configuration A, and is in configuration A if Onl is in configuration

B or C.

We split the cost of Onl into the cost for serving requests, Onlreq, and the cost paid for

its migrations, Onlmig. Observe that, for any request σt, Off1(σt) + Off2(σt) = Onlreq(σt).

Moreover, as Off3 does not pay for any request and migrates at the same time as Onl does,

Off3(σt) = Onlmig(σt). Summing up,
∑3

j=1 Offj(σt) = Onl(σt) for any request σt. Taking

into account the initial reconfiguration of nodes in Offj solutions (which involves at most one

swap of cost 2 · α), we obtain that
∑3

j=1 Off(σ) ≤ 2 · α + Onl(σ). Hence, by the averaging

argument, there exists j ∈ {1, 2, 3}, such that Onl(σ) ≥ 3 ·Offj(σ)− 2 ·α ≥ 3 ·Opt(σ)− 2 ·α.

This concludes the proof, as 2 · α becomes negligible as the length of σ grows.

3.6 Conclusions

In this chapter we introduced a formal model for studying a placement of communicating

virtual machines in a data center. For this model, we proposed and analysed an algorithm that

uses minimal resource augmentation to structure groups of communicating virtual machines

in a way that guarantees efficiency of moving the group to a different physical machine. This

approach limits the total number of virtual machines in the data center in favor of reducing

network usage by allowing efficient reconfiguration of interacting virtual machines. From the

theoretical point of view, we designed the algorithm for the resource augmented scenario with

competitive ratio O(k log k) (where k is the capacity of a physical cluster), and we provided a

lower-bound of Ω(k) for the competitive ratio of any deterministic algorithm that holds even in

resource-augmented scenario. The disparity between the performance of the algorithm and the

lower bound encourages future research on improving either one of those.

In our model, we assumed a simplified view of a data center, in particular we neglect the

substrate network topology, by assuming that the distance among all physical machines is equal.

Capturing real-world data center topologies can lead to more network-efficient virtual machine

placement. It would be vital to either focus on a specific topology (such as e.g. a Fat Tree), or

to develop a general solution for arbitrary metric.

Part II

Managing Resources in Routers

65

Chapter 4

Caching of Routing Tables

In the second part of this thesis, we consider the problem of memory management in a single

router. Modern routers consist of two logical components. Those two components use disjoint

memory (often of distinct type) and disjoint processing units:

1. The forwarding plane, which contains forwarding table described in the previous section,

and performs the actual packet transmission according to the forwarding table.

2. The control plane, which is responsible for reflecting the network topology in the forward-

ing table.

The forwarding component has finite memory, and in multiple scenarios the size of forward-

ing table exceeds the size of available memory. One of the solutions is to store only a part of

a forwarding table on the forwarding device, that acts as a cache for the complete forwarding

table that is stored in the control plane, see Figure 4.1. However, this might result in the

situation, where the forwarding device do not posess sufficient information to proceed (a cache

miss).

Even upon the cache miss, the packet still needs to reach its destination. The common way

to handle the situation is to redirect the packet to the control plane component, which posseses

the complete forwarding table. However, the packet cannot be forwarded by the control plane,

hence it is supplemented with forwarding informations and sent back to the forwarding plane.

The forwarding device overrides the usual procedure of forwarding table lookup, and instead it

uses the supplemented information to forward the packet.

Upon the forwarding table cache miss, the control plane may decide to update the cached

portion of the forwarding table that resides in the forwarding component. Standard caching-

related problems arise, such as: which entry to evict to provide space to store the new entry.

Immediate update might seem a rational strategy, but in scenarios with highly dynamic networks

that rearrange often, it might be beneficial to delay the update. Premature update might result

in the situation, where more time is spent alternating the cache configuration than processing

packets (this is similar to thrashing in virtual memory systems).

In the traditional caching problem, the cache elements are independent: it is always feasible

to pull in or out the elements of the cache regardless of cache configuration.

67

68 CHAPTER 4. CACHING OF ROUTING TABLES

cache

T

forwarding plane

cache
updates

control plane

slow memory

Figure 4.1: We propose a caching scenario, where the limited memory of a router stores a portion of the for-

warding table. The complete forwarding table is stored at the controller.

Note that the technical feasibility of this solution heavily depends on the rule dependencies.

In the most ubiquitous scenario, the rules are prefixes of IP addresses (they are bit strings).

Whenever a packet arrives, the router follows a longest matching prefix (LMP) scheme: it

searches for the rule that is a prefix of the destination IP of the packet and among matching

rules it chooses the longest one. In other words, if the prefixes corresponding to rules are stored

in the tree1, then the tree is traversed from the root downwards, and the last found rule is used.

This explains why we require the cached nodes to form a subforest: leaving a less specific rule

on the router while evicting a more specific one (i.e., keeping a tree node in cache while evicting

its descendant) will result in a situation where packets will be forwarded according to the less

specific rule, and hence potentially exit through the wrong port. The LMP scheme also ensures

that the described approach is implementable: one could simply add an artificial rule at the tree

root in the router (matching an empty prefix). This ensures that when no actual matching rule

is found in the router (in the cache), the packet will be forwarded according to this artificial

rule to the controller that stores all the rules and can handle all packets appropriately.

In contemporary networks, the control plane component can be physically separated from

the forwarding plane, and to perform remote management over the network it uses protocols

such as OpenFlow [MAB+08]. In such scenario, excessive cache updates cause not only delay in

packet processing, but also cause congestion in the network between the forwarding component

and the control component.

Our formal model is a novel variant of competitive paging, a classic online problem. Caching

scenarios are best expressed and analysed in online settings. Similarly to Chapter 3, we use

the competitive analysis to determine the performance of our strategy [BE98]. In this thesis,

we consider the variant of caching with dependencies among cached elements motivated by the

structure of forwarding table. In the framework of the competitive analysis, the paging prob-

lem was first analyzed by Sleator and Tarjan [ST85b], who presented k-competitive algorithms

(where k is the cache size) and a matching lower-bound. The simple paging problem was later

generalized to allow different fetching costs (weighted paging) [CKPV91, You94] and addition-

ally different item sizes (file caching) [You02], with the same competitive ratio. To the best of

our knowledge, the variant of caching, where fetching items to the cache is not allowed unless

some other items are cached (e.g., because of tree dependencies) was not considered previously

in the framework of competitive analysis.

1We do not have to assume that they are actually stored in a real tree; this tree is implicit in the LMP scheme.

4.1. PROBLEM DEFINITION 69

4.1 Problem Definition

In this chapter, we introduce a natural extension of an online paging problem, where items

have inter-dependencies. In the classic online paging problem, items of some universe are

requested by a processing entity (e.g., blocks of RAM are requested by the processor). To speed

up the access, computers use a faster memory, called cache, capable of accommodating k such

items. Upon a request to a non-cached item, the algorithm has to fetch it into the cache, paying

a fixed cost, while a request to a cached item is free. If the cache is full, the algorithm has to free

some space by evicting an arbitrary subset of items from the cache. The model variant, where

fetching is optional (the requested item can be served without being in the cache, incurring

some fixed cost) is called a bypassing model.

In our model, we assume that the universe is an arbitrary (not necessarily binary) rooted

tree T and the requested items are its nodes. For any tree node v, T (v) ⊆ T is a subtree rooted

at v containing v and all its descendants. We require the following property: if a node v is in

the cache, then all nodes of T (v) are also cached. In other words, we require that the cache is

a subforest of T , i.e., a union of disjoint subtrees of T . We call this problem online tree caching.

Furthermore, we assume a bypassing model and distinguish between two types of requests:

a request can be either positive or negative. The positive requests correspond to “normal”

requests known from caching problems: we pay 1 if the node is not cached; for a negative

request, we pay 1 if the corresponding request is cached. After serving the request, we may

reorganize our cache arbitrarily, but the resulting cache has to still be a subforest of T . We

pay α for fetching or evicting any single node, where α ≥ 1 is an integer and a parameter of

the problem. Our goal is to minimize the overall cost of maintaining the cache and serving the

requests.

Now, we are ready to formalize the model. We denote the height of T by h(T). For any

node v, T (v) denotes the subtree of T rooted at v (containing v and all its descendants). A tree

cap rooted at v is “an upper part” of T (v), i.e., it contains v and if it contains node u, then it

also contains all nodes on the path from u to v. If A ⊆ B are both tree caps rooted at v, then

we say that A is a tree cap of B.

We assume discrete time slotted into rounds, with round t ≥ 1 corresponding to time interval

(t − 1, t). In round t, the algorithm is given one (positive or negative) request to exactly one

tree node and has to process it, i.e., pay associated costs (if any). Right after round t, at

time t, the algorithm may arbitrarily reorganize its cache, (i) ensuring that the resulting cache

is a subforest of T (i.e., if the cache contains node v, then it contains the entire T (v)) and

(ii) preserving the cache capacity constraint. An algorithm pays α for a single node fetch or

eviction. We denote the contents of the cache at round t by Ct. (As the cache changes contents

only between rounds, Ct is well defined.) We assume that α is an even integer (this assumption

may change costs at most by a constant factor). We assume that the algorithm starts with the

empty cache.

We call a non-empty set X a valid positive changeset for cache C if X ∩ C = ∅ and C ∪X
is a subforest of T , and a valid negative changeset if X ⊆ C and C \X is a subforest of T . We

call X a valid changeset if it is either valid positive or negative changeset. Note that the union

70 CHAPTER 4. CACHING OF ROUTING TABLES

of positive (negative) changesets is also a valid positive (negative) changeset. We say that the

algorithm applies changeset X, if it fetches all nodes from X (for a positive changeset) and

evicts all nodes from X (for a negative one). Note that not all valid changesets may be applied

as the algorithm is also limited by its cache capacity (kONL for an online algorithm and kOPT

for the optimal offline one).

4.2 Algorithm

The algorithm Tree Caching (TC) presented in the following is a simple scheme that

follows a rent-or-buy paradigm: it fetches (or evicts) a changeset X if the cost associated with

requests at X reaches the cost of such fetch or eviction.

More concretely, TC operates in multiple phases. The first phase starts at time 0. TC starts

each phase with the empty cache and proceeds as follows. Within a phase, every node keeps

a counter, which is initially zero. If at round t it pays 1 for serving the request, it increments its

counter. Whenever a node is fetched or evicted from the cache, its counter is reset to zero. Note

that this implies that the counter of v is equal to the number of negative (positive) requests

to v since its last fetching to the cache (eviction from the cache). For a set A ⊆ T , we denote

the sum of all counters in A at time t by cntt(A). At time t, TC verifies whether there exists

a valid changeset X, such that

• (saturation property) cntt(X) ≥ |X| · α and

• (maximality property) cntt(Y) < |Y | · α for any valid changeset Y) X.

In this case, the algorithm modifies its cache applying X.

If, at time t, TC is supposed to fetch some set X, but by doing so it would exceed the cache

capacity kONL, it evicts all nodes from the cache instead, and starts a new phase at time t.

Such a final eviction might not be present in the last phase, in which case we call it unfinished.

In Lemma 21 (below), we show that at any time, all valid changesets satisfying both proper-

ties of TC are either all positive or all negative. Furthermore, right after the algorithm applies

a changeset, no valid changeset satisfies saturation property.

4.3 Analysis of TC

Throughout this chapter, we fix an input I, its partition into phases, and analyze both TC

and Opt on a single fixed phase P . We denote the times at which P starts and ends by begin(P)

and end(P), respectively, i.e., rounds in P are numbered from begin(P) + 1 to end(P). A proof

of the following technical lemma follows by induction and is presented in 4.4.

Lemma 21. Fix any time t > begin(P). For any valid changeset X for Ct, it holds that

cntt(X) ≤ |X| · α. If a changeset X is applied at time t, the following properties hold:

1. X contains the node requested at round t,

2. cntt(X) = |X| · α,

4.3. ANALYSIS OF TC 71

3. cntt(Y) < |Y | · α for any valid changeset Y for Ct+1 (note that Ct+1 is the cache state

right after application of X),

4. X is a tree cap of a tree from Ct+1 if X is positive and it is a tree cap of a tree from Ct

if X is negative.

In the following, we assume that no positive requests are given to nodes inside cache and no

negative ones to nodes outside of it. (This does not change the behavior of TC and can only

decrease the cost of Opt.)

For the sake of analysis, we assume that at time end(P), TC actually performs a cache fetch

(exceeding the cache size limit) and then, at the same time instant, empties the cache. This

replacement only increases the cost of TC. Let kP denote the number of nodes in the cache of

TC at end(P). In a finished phase, we measure it after the artificial fetch, but right before the

final eviction, and thus kP ≥ kONL + 1; in an unfinished phase kP ≤ kONL.

The crucial part of our analysis that culminates in Section 4.3.2 is the technique of shifting

requests. Namely, we modify the input sequence by shifting requests up or down the tree, so

that the resulting input sequence (i) is not harder for Opt and (ii) is more structured: we may

lower bound the cost of Opt on each node separately and relate it to the cost of TC.

4.3.1 Event Space and Fields

In our analysis, we look at a two-dimensional, discrete, spatial-temporal space, called the

event space. The first dimension is indexed by tree nodes, whose order is an arbitrary extension

of the partial order given by the tree. That is, the parent of a node v is always “above” v. The

second dimension is indexed by round numbers of phase P . The space elements are called slots.

Some slots are occupied by requests: a request at node v given at round t occupies slot (v, t).

From now on, we will identify P with a set of requests occupying some slots in the event space.

We partition slots of the whole event space into disjoint parts, called fields, and we show how

this partition is related to the costs of TC and Opt. For any node v and time t, lastv(t) denotes

the last time strictly before t, when node v changed state from cached to non-cached or vice

versa; lastv(t) = begin(P) if v did not change its state before t in phase P . For a changeset Xt

applied by TC at time t, we define the field F t as

F t = { (v, r) : v ∈ Xt ∧ lastv(t) + 1 ≤ r ≤ t } .

That is, field F t contains all the requests that eventually trigger the application of Xt at time

t. We say that F t ends at t. We call field F t positive (negative) if Xt is a positive (negative)

changeset. An example of a partitioning into fields is given in Figure 4.2. We define req(F t)

as the number of requests belonging to slots of F t and let size(F t) be the number of involved

nodes (note that size(F t) = |Xt|). The observation below follows immediately by Lemma 21.

Observation 12. For any field F , req(F) = size(F)·α. All these requests are positive (negative)

if F is positive (negative).

Finally, we call the rest of the event space defined by phase P open field and denote it by

F∞. The set of all fields except F∞ is denoted by F . Let size(F) =
∑

F∈F size(F).

72 CHAPTER 4. CACHING OF ROUTING TABLES

F∞−

F t2

begin(P) end(P)

kP
kONL

F t1 ∩X

F t1
≤τ

X

F t1

t1 t2

τ

F∞
+

F t1

F t1

Figure 4.2: Partitioning of a single phase into fields for a line (a tree with no branches). The thick line represents

cache contents. Possible final eviction at end(P) is not depicted. F t1 is a negative field and F t2 is a positive one.

In the particular depicted example, nodes are ordered from the leaf (bottom) to the root (top of the picture).

We emphasize that for a general, branched tree, some notions (in particular fields) no longer have nice geometric

interpretations.

Lemma 22. For any phase P partitioned into a set of fields F ∪{F∞}, it holds that TC(P) ≤
2α · size(F) + req(F∞) + kP · α.

Proof. By Observation 12, the cost associated with serving the requests from all fields from F
is
∑

F∈F α · size(F) = α · size(F). The cost of the cache reorganization at the fields’ ends is

exactly the same. The term req(F∞) represents the cost of serving the requests from F∞ and

kP · α upper-bounds the cost of the final eviction (not present in an unfinished phase).

4.3.2 Shifting Requests

The actual challenge in the proof is to relate the structure of the fields to the cost of Opt.

The rationale behind our construction is based on the following thought experiment. Assume

that the phase is unfinished (for example, when the cache is so large that the whole input

corresponds to a single phase). Recall that the number of requests in each field F ∈ F is

equal to size(F) · α. Assume that these requests are evenly distributed among the nodes of F

(each node from F receives α requests in the slots of F). Then, the history of any node v is

alternating between periods spent in positive fields and periods spent in negative fields. By

our even distribution assumption, each such a period contains exactly α requests. Hence, for

any two consecutive periods of a single node, Opt has to pay at least α (either α for positive

requests or α for negative ones, or α for changing the cached/non-cached state of v). Essentially,

this shows that Opt has to pay an amount that can be easily related to α · size(F).

Unfortunately, the requests may not be evenly distributed among the nodes. To alleviate

this problem, we will modify the requests in phase P , so that the newly created phase P ′ is not

harder for Opt and will “almost” have the even distribution property. In this construction, the

time frame of P and its fields are fixed.

4.3. ANALYSIS OF TC 73

Legal Shifts

We say that a request placed originally (in phase P) at slot (v, t) is legally shifted if its

new slot is (m(v), t), where (i) for a positive request, m(v) is either equal to v or is one of its

descendants and (ii) for a negative request, m(v) is either equal to v or is one of its ancestors.

For any fixed sequence of fetches and evictions within phase P , the associated cost may only

decrease when these actions are replayed on the modified requests.

Observation 13. If P ′ is created from P by legally shifting the requests, then Opt(P ′) ≤
Opt(P).

The main difficulty is however in keeping the legally shifted requests within the field they

originally belonged to. For example, a negative request from F shifted at round t from node u

to its parent may fall out of F as the parent may still be outside the cache at round t. In effect,

a careless shifting of requests may lead to a situation where, for a single node v, requests do not

create interleaved periods of positive and negative requests, and hence we cannot argue that

Opt(P ′) is sufficiently large.

In the following subsections, we show that it is possible to legally shift the requests of any

field F ∈ F (i.e., shift positive requests down and negative requests up), so that they remain

within F , and they will be either exactly or approximately evenly distributed among nodes of

F . This will create P ′ with appropriately large cost for Opt.

Notation

We start with some general definitions and remarks. For any field F and set of nodes A, let

F ∩A = {(v, t) ∈ F : v ∈ A}. Analogously, if L is a set of rounds, then let F ∩L = {(v, t) ∈ F :

t ∈ L}. For any field F t and time τ , we define

F t≤τ = F t ∩
{
t′ : t′ ≤ τ

}
.

It is convenient to think that F t evolves with time and F t≤τ is the snapshot of F t at time τ . Note

that F t may have some nodes not included in F t≤τ . These objects are depicted in Figure 4.2.

We may extend the notions of req and size to arbitrary subsets of fields in a natural way.

For any subset S ⊆ F , we call it over-requested if req(S) > size(S) · α.

Lemma 23. Fix any field F t, the corresponding changeset Xt, and any time τ .

1. If F t is negative, then for any tree cap D of Xt, the set F t≤τ ∩D is not over-requested.

2. If F t is positive, then for any subtree T ′ ⊆ T , the set F t≤τ ∩ T ′ is not over-requested.

Proof. As the nodes from F t≤τ∩D form a valid changeset at time τ , Lemma 21 implies req(F t≤τ∩
D) = cntτ (F t≤τ ∩D) ≤ |F t≤τ ∩D| · α.

The proof of the second property is identical: As F t≤τ ∩ T ′ is also a valid changeset at time

τ , by Lemma 21, req(F t≤τ ∩ T ′) = cntτ (F t≤τ ∩ T ′) ≤ |F t≤τ ∩ T ′| · α.

By Lemma 23 applied at τ = t and Observation 12, we deduct the following corollary.

74 CHAPTER 4. CACHING OF ROUTING TABLES

Corollary 3. Fix any field F t, the corresponding changeset Xt and any tree cap D of Xt.

1. If F t is positive, then req(F t ∩D) ≥ α · |D|.

2. If F t is negative, then req(F t ∩ (Xt \D)) ≥ α · |Xt \D|.

Informally speaking, the corollary above states that the average amount of requests in a pos-

itive field is at least as large at the top of the field as at its bottom. For a negative field this

relation is reversed.

Shifting Negative Requests Up

Fix a valid negative changeset Xt applied at time t and the corresponding field F t. We call

a tree cap Y ⊆ Xt proper if

1. req(F t ∩ Y) = |Y | · α and

2. F t≤τ ∩D is not over-requested for any tree cap D ⊆ Y and any time τ ≤ t.

The first property of Lemma 23 states that before we shift the requests of Ft, the set Xt

is proper. We start with Y = Xt, and proceed in a bottom-up fashion, inductively using the

lemma below. We take care of a single node of Y at a time and ensure that after the shift the

number of requests at this node is exactly α and the remaining part of Y remains proper.

Lemma 24. Given a negative field F t, the corresponding changeset Xt and a proper tree cap

Y ⊆ Xt, it is possible to choose a leaf v and legally shift some requests inside Y , so that in

result req(v) = α and Y \ {v} is proper.

Proof. As req(F t ∩ Y) = |Y | · α, Corollary 3 implies that any leaf of Y was requested at least

α times inside F t. We pick an arbitrary leaf v, and let r ≥ α be the number of requests to v in

F t.

We look at all the requests to v in F t ordered by their round. Let s be the round when

(α+ 1)-th of them arrives. We will now show that at round s, TC already has p(v) in its cache.

If it had not, {v} would be a tree cap of F t≤s, and by the first property of Lemma 23, it would

contain at most α requests, which is a contradiction. Hence, if we shift the chronologically last

r − α requests from v to p(v), these requests stay within F t.

It remains to show that Y \ {v} is proper after such a shift. We choose any tree cap D ⊆ Y
and any time τ ≤ t. If D does not contain p(v) or τ < s, then the number of requests in F t≤τ ∩D
was not changed by the shift, and hence F t≤τ ∩ D is not over-requested. Otherwise, D ∪ {v}
was a tree cap in Y and by the lemma assumption, F t≤τ ∩ (D ∪ {v}) was not over-requested.

As F t≤τ ∩D has now exactly α less requests than F t≤τ ∩ (D ∪ {v}) had, it is not over-requested,

either.

Corollary 4. For any negative field F t, it is possible to legally shift its requests up, so that they

remain within F t and after the modification each node is requested exactly α times.

4.3. ANALYSIS OF TC 75

Shifting Positive Requests Down

We will now focus on the problem of shifting the positive requests down in a single positive

field F t, corresponding to a single fetch of TC at the time t. Our goal is to devise a shifting

strategy, that will result in at least Ω(size(F t)/h(T)) nodes having α/2 requests each. While

this result may be suboptimal, deriving a shifting strategy for a positive field that would have

the same equal distribution guarantee as the one provided by Corollary 4 is not possible.

First, we prove that from any node v in the field, we can shift down a constant fraction of

its requests within the field, distributing them to different nodes.

Lemma 25. Let F t be a positive field and let Xt be the corresponding changeset fetched to the

cache at time t. Fix any node v ∈ Xt that has been requested at least c · (α/2) times in F t,

where c is an integer. It is possible to shift down its requests to the nodes of T (v) ∩Xt, so that

these requests remain inside F t and dc/2e nodes of T (v) get α/2 requests each.

Proof. We order the nodes u1, u2, . . . u|T (v)∩Xt| of T (v) ∩ Xt, so that lastui(t) ≤ lastui+1(t) for

all i. In case of a tie, we place nodes that are closer to v first. Note that this linear ordering

is an extension of the partial order defined by the tree: the parent of a node cannot be evicted

later than the node itself (otherwise the cache would cease to be a subforest of T). In particular,

it holds that u1 = v.

We number c·(α/2) requests to v chronologically, starting from 1. For any j ∈ {1, . . . , dc/2e}
we look at round τj with the ((j − 1) · α+ 1)-th request to v. When this request arrives, node

uj is already present in the cache. Otherwise, we would have at least j · α+ 1 requests in

F t≤τj ∩ {u1, . . . , uj} (already in F t≤τj ∩ {u1} alone), which would make it over-requested, and

thus contradict the second property of Lemma 23. Hence, we may take requests numbered from

(j − 1) · α + 1 to (j − 1) · α + α/2, shift them down from v to uj , and after such modification

these requests are still inside F t. Note that for j = 1 requests are not really shifted, as u1 is v

itself. We perform such shift for any j ∈ {1, . . . , dc/2e}, which yields the lemma.

Lemma 26. For any positive field F t, it is possible to legally shift its requests down, so that

they remain within F t and after the modification at least size(F t)/(2h(T)) nodes in F t have at

least α/2 requests each.

Proof. Let Xt be the changeset corresponding to field F t, which is fetched to the cache at time t.

By Observation 12, req(F t) = |Xt| · α. We gather the requests at every node into groups of

α/2 consecutive requests. In every node at most α/2 requests remain not grouped. Let req(X)

denote the number of grouped requests in the set X. Clearly, req(F t) ≥ |Xt| · α/2, i.e., there

are at least |Xt| groups of requests in set Xt.

Let Xt = X1
t tX2

t t· · ·tXh(T)
t be a partition of the nodes of the tree Xt into layers according

to their distance to the root. By the pigeonhole principle, there is a layer Xi
t containing at least

d|Xt|/h(T)e groups of requests (each group has α/2 requests).

Nodes of Xi
t are independent, i.e., for u, v ∈ Xi

t the trees T (u) and T (v) are disjoint. There-

fore, we may use the shifting strategy described in Lemma 25 for each node of Xi
t separately.

After such modification, at least d|Xt|/(2h(T))e ≥ size(Ft)/(2h(T)) nodes have at least α/2

requests each.

76 CHAPTER 4. CACHING OF ROUTING TABLES

INOUT INOUT OUTv

begin(P) end(P)

Figure 4.3: Partitioning of the phase into interleaving in and out periods for node v. The thick line represents

cache contents. The leftover out period (the last one) is present for node v as it has finished phase P inside

TC’s cache. The periods can be followed by requests contained in F∞.

Using Request Shifting for Bounding OPT

Finally, we may use our request shifting to relate size(F) =
∑

F∈F size(F) to the cost of

Opt in a single phase P . Recall that kP denotes the size of TC’s cache at the end of P . We

assume that Opt may start the phase with an arbitrary state of the cache.

Lemma 27. For any phase P , Opt(P) ≥ (size(F)/(4h(T))− kP) · α/2.

Proof. We transform P using legal shifts that are described in Section 4.3.2 and Section 4.3.2.

That is, we create a corresponding phase P ′ that satisfies both Corollary 4 and Lemma 26. By

Observation 13, it is sufficient to show that Opt(P ′) ≥ (size(F)/(4h(T))− kP) · α/2.

We focus on a single node v. We cut its history into interleaved periods: out periods, when

v is outside the cache and receives positive requests, and in periods when TC keeps v in the

cache and v receives negative requests. A final (possibly empty) part corresponding to the time

when v is in the F∞ field is not accounted in out or in periods, i.e., each in or out period

corresponds to some field F ∈ F . Let pin and pout denote the total number of in and out

periods (respectively) for all nodes during the phase. An example is given in Figure 4.3.

Recall that TC starts each phase with an empty cache, and hence each node starts with an

out period. For kP nodes that are in TC’s cache at the end of the phase (and only for them)

their history ends with an out period not followed by an in period. We call them leftover

periods. Thus, pout = pin + kP . The total number of periods (pin + pout) is equal to the total

size of all fields, size(F), and thus pout ≥ size(F)/2.

We call a period full if it has at least α/2 requests. The shifting strategies described in the

previous section ensure that all in periods are full and at least 1/(2h(T)) of all out periods

are full. Thus, there are at least pout/(2h(T))− kP full non-leftover out periods; each of them

together with the following in period constitutes a full out-in pair.

Opt has to pay at least α/2 for the node in the course of the history described by a full

out-in pair: it pays α either for changing the cached/non-cached state of a node, or α/2 for all

positive requests or α/2 for all negative ones. Thus, Opt(P ′) ≥ (pout/(2h(T)) − kP) · α/2 ≥
(size(F)/(4h(T))− kP) · α/2.

4.3. ANALYSIS OF TC 77

4.3.3 Competitive Ratio

To relate the cost of Opt to TC in a single phase P , we still need to upper-bound req(F∞)

and relate kP · α to the cost of Opt (i.e., compare the bounds on TC and Opt provided by

Lemma 22 and Lemma 27, respectively).

For the next two lemmas, we define VOPT as the set of all nodes that were in Opt cache

at some time of P and let V c
OPT = T \ VOPT. Note that VOPT is a union of subforests (nodes

present in Opt’s cache at consecutive times), and hence a subforest itself.

Lemma 28. For any phase P , it holds that req(F∞) ≤ 2 · kONL · α+ 2 ·Opt(P).

Proof. We assume first that P is a finished phase. Then, P ends with an artificial fetch of

Xend(P) at time end(P) (followed by the final eviction). We split F∞ into two disjoint parts

(see Figure 4.2):

F∞− = {(v, t) : v ∈ Cend(P), t ≥ lastv(end(P))},
F∞+ = {(v, t) : v /∈ Cend(P) tXend(P), t ≥ lastv(end(P))}.

Note that F∞− contains only negative requests and F∞+ only positive ones. As req(F∞) =

req(F∞−) + req(F∞+ ∩V c
OPT) + req(F∞+ ∩VOPT), we estimate each of these summands separately.

• Nodes from F∞− are in the cache Cend(P) and were not evicted from the cache. Thus,

req(F∞−) ≤ |Cend(P)| · α ≤ kONL · α.

• All the requests from V c
OPT are paid by Opt, and hence req(F∞+ ∩ V c

OPT) ≤ req(V c
OPT) ≤

Opt(P).

• F∞+ is a valid changeset for cache Cend(P)tXend(P). As VOPT is a subforest of T , F∞+ ∩VOPT

is also a valid changeset for the cache Cend(P) t Xend(P). Therefore, req(F∞+ ∩ VOPT) ≤
size(F∞+ ∩ VOPT) · α, as otherwise the set fetched at time end(P) would not be maximal.

(TC could then fetch Xend(P)t(F∞+ ∩VOPT) instead of Xend(P).) Thus, req(F∞+ ∩VOPT) ≤
|VOPT| ·α = kOPT ·α+(|VOPT|−kOPT) ·α ≤ kONL ·α+Opt(P). The last inequality follows

as — independently of the initial state — Opt needs to fetch at least |VOPT|−kOPT nodes

to the cache during P .

Hence, in total, req(F∞) ≤ 2 · kONL · α+ 2 ·Opt(P) for a finished phase P .

We note that if there was no cache change at end(P), the analysis above would hold with

Xend(P) = ∅ with virtually no change. Therefore, for an unfinished phase P ending with a fetch

or ending without cache change at end(P), the bound on req(F∞) still holds. However, if an

unfinished phase P ends with an eviction, then we look at the last eviction-free time τ of P .

We now observe the evolution of field F∞ from time τ till end(P). At time τ , req(F∞) ≤
2 ·kONL ·α+ 2 ·Opt(P). Furthermore, in subsequent times, it may only decrease: at any round

F∞ gets an additional request, but on eviction req(F∞) decreases by α times the number of

evicted nodes (i.e., at least by α ≥ 1). Hence, the value of req(F∞) at end(P) is also at most

2 · kONL · α+ 2 ·Opt(P).

78 CHAPTER 4. CACHING OF ROUTING TABLES

By combining Lemma 22, Lemma 27 and Lemma 28, we immediately obtain the following

corollary (holding for both finished and unfinished phases).

Corollary 5. For any phase P , it holds that TC(P) ≤ O(h(T)) · Opt(P) + O(h(T) · (kP +

kONL) · α).

Using the corollary above, its remains to bound the value of kP . This is easy for an unfinished

phase, as kP ≤ kONL there. For a finished phase, we provide another bound.

Lemma 29. For any finished phase P , it holds that kP ·α ≤ Opt(P) · (kONL + 1)/(kONL + 1−
kOPT).

Proof. First, we compute the number of positive requests in V c
OPT. Let Xt1 , Xt2 , . . . , Xts be

all positive changesets applied by TC in P . For any t, let X ′t = Xt \ VOPT. As Xt is some

tree cap and VOPT is a subforest of T , X ′t is a tree cap of Xt. By Corollary 3, the number of

requests to nodes of X ′t in field F t is at least |X ′t| · α. These requests for different changesets

Xt are disjoint and they are all outside of VOPT. Hence the total number of positive requests

outside of VOPT is at least
∑s

i=1 |X ′ti | ·α, where
∑s

i=1 |X ′ti | ≥ |
⋃s
i=1X

′
ti | = |(

⋃s
i=1Xti)\VOPT| ≥

|⋃s
i=1Xti | − |VOPT| ≥ kP − |VOPT|.
Now Opt(P) can be split into the cost associated with nodes from VOPT and V c

OPT, re-

spectively. For the former part, Opt has to pay at least (|VOPT| − kOPT) · α for the fetches

alone. For the latter part, it has to pay 1 for each of at least (kP − |VOPT|) ·α positive requests

outside of VOPT. Hence, Opt(P) ≥ (|VOPT| − kOPT) · α+ (kP − |VOPT|) · α = (kP − kOPT) · α.

Then, kP · α ≤ kP ·Opt(P)/(kP − kOPT). As the phase is finished, kP ≥ kONL + 1, and thus

kP · α ≤ (kONL + 1) ·Opt(P)/(kONL + 1− kOPT).

Theorem 14. The algorithm TC is O(h(T) · kONL/(kONL − kOPT + 1))-competitive.

Proof. Let R = h(T) · kONL/(kONL− kOPT + 1). We split an input I into a sequence of finished

phases followed by a single unfinished phase (which may not be present). For a finished phase P ,

we have kP > kONL, and hence Corollary 5 and Lemma 29 imply that TC(P) ≤ O(R) ·Opt(P).

For an unfinished phase kP ≤ kONL, and therefore, by Corollary 5, TC(P) ≤ O(h(T))·Opt(P)+

O(h(T) · kONL · α). Summing over all phases of I yields TC(I) ≤ O(R) · Opt(I) + O(h(T) ·
kONL · α).

4.4 No over-requested changesets

Before proving Lemma 21, we present the following technical claim.

Claim 15. For any phase P , the following invariants hold for any time t > begin(P):

1. cntt−1(X) < |X| · α for a valid changeset X for Ct,

2. cntt(X) ≤ |X| · α for a valid changeset X for Ct,

3. any changeset X with property cntt(X) = |X| · α contains the node requested at round t.

4.5. IMPLEMENTATION OF TC 79

Proof. First observe that Invariant 1 (for time t) along with the fact that round t contains only

one request immediately implies that cntt(X) ≤ cntt−1(X) + 1 ≤ (|X| ·α− 1) + 1 = |X| ·α, i.e.,

Invariant 2 for time t. Furthermore the equality may hold only for changesets containing the

node requested at round t, which implies Invariant 3 for time t.

It remains to show that Invariant 1 holds for any step t > begin(P). It is trivially true

for t = begin(P) + 1 as cntt−1(X) = 0 then. Let t + 1 be the earliest time in phase P

for which Invariant 1 does not hold; we will then show a contradiction with the definition of

Alg or a contradiction with other Invariants at time t. That is, we assume that there exists

a positive changeset X for Ct+1 such that cntt(X) ≥ |X| ·α (the proof for a negative changeset

is analogous). Note that Alg must have performed an action (fetch or eviction) at time t as

otherwise X would be also a changeset for Ct = Ct+1 with cntt(X) ≥ |X| ·α, which means that

X should have been applied by Alg at time t. We consider two cases.

If Alg fetches a positive changeset Y at time t, Ct+1 = CttY and cntt(Y) = |Y | ·α. Then,

Y tX is a changeset for Ct, and cntt(Y tX) ≥ |Y tX| · α. This contradicts the maximality

property of set Y chosen at time t by Alg.

If Alg evicts a negative changeset Y at time t, Ct+1 = Ct \Y . Invariant 2 and the definition

of Alg implies cntt(Y) = |Y | · α, and thus, by Invariant 3, Y contains the node requested at

round t. As X ∩ Y ⊆ Ct, X ∩ Y does not have any positive requests at time t, and therefore

cntt(X \ Y) = cntt(X) ≥ |X| · α ≥ |X \ Y | · α. By Invariant 2, cntt(X \ Y) ≤ |X \ Y | · α, and

hence cntt(X \ Y) = |X \ Y | ·α. This contradicts Invariant 3 as X \ Y cannot contain the node

requested at round t (because Y contains this node).

Proof of Lemma 21. The inequality cntt(X) ≤ |X| · α is equivalent to Invariant 2 of Claim 15.

Assume now that X is applied at time t. By the definition of Alg, cntt(X) ≥ |X| ·α, and thus

cntt(X) = |X| · α, i.e., Property 2 follows. Then, Invariant 3 of Claim 15 implies Property 1.

Finally, Invariant 1 of Claim 15 for time t+ 1 is equivalent to Property 3.

To show Property 4, observe that the changeset X applied at time t cannot be a disjoint

union of two (or more) valid changesets X1 and X2. By Property 2, |X| · α = cntt(X) =

cntt(X1) + cntt(X2). If cntt(X1) < |X1| · α or cntt(X2) < |X2| · α, then cntt(X1) + cntt(X2) <

(|X1|+ |X2|) ·α = |X| ·α, a contradiction. Therefore, cntt(X1) = |X1| ·α and cntt(X2) = |X2| ·α.

But then Invariant 3 of Claim 15 would imply that both X1 and X2 contain a node requested

at time t, which is a contradiction as they are disjoint.

Therefore, if X is a positive changeset applied at t, then X is a single tree cap of a tree from

subforest Ct+1, and likewise if X is negative, then X is a single tree cap of a tree from subforest

Ct.

4.5 Implementation of TC

Recall that at each time t, TC verifies the existence of a valid changeset that satisfies

saturation and maximality properties (see the definition of TC in Section 4.2). Here, we show

that this operation can be performed efficiently. In particular, in the following two subsections,

we will prove the following theorem.

80 CHAPTER 4. CACHING OF ROUTING TABLES

Theorem 16. TC can be implemented using O(|T |) additional memory, so that to make a de-

cision at time t, it performs O(h(T) + max{h(T), deg(T)} · |Xt|) operations, where deg(T) is

a maximum node degree in T and Xt is the changeset applied at time t (|Xt| = 0 if no changeset

is applied).

Let vt be the node requested at round t. Note that we may restrict our attention to requests

that entail a cost for TC, as otherwise its counters remain unchanged and certainly TC does

not change cache contents. We use Lemma 21 to restrict possible candidates for changesets

that can be applied at time t. First, we note that if a node vt requested at round t is outside

the cache, then, at time t, TC may only fetch some changeset, and otherwise it may only evict

some changeset. Therefore, we may construct two separate schemes, one governing fetches and

one for evictions.

In Section 4.5.1, using Lemma 21, we show that after processing a positive request, TC needs

to verify at most h(T) possible positive changesets, each in constant time, using an auxiliary

data structure. The cost of updating this structure at time t is O(h(T) + h(T) · |Xt|).
The situation for negative changesets is more complex as even after applying Lemma 21 there

are still exponentially many valid negative changesets to consider. In Section 4.5.2, we construct

an auxiliary data structure that returns a viable candidate in time O(h(T)+deg(T) · |Xt|). The

update of this structure at time t can be also done in O(h(T) + deg(T) · |Xt|) operations.

4.5.1 Positive Requests and Fetches

At any time t and for any non-cached node u, we may define Pt(u) as a tree cap rooted at u

containing all non-cached nodes from T (u). During an execution of TC, we maintain two values

for each non-cached node u: cntt(Pt(u)) and |Pt(u)|. When a counter at node vt is incremented,

we update cntt(Pt(u)) for each ancestor u of v (at most h(T) updated values). Furthermore, if

a node v changes its state from cached to non-cached (or vice versa), we update the value of

|Pt(u)| for any ancestor u of v (at most h(T) updates per each node that changes the state).

Therefore, the total cost of updating these structures at time t is at most O(h(T) +h(T) · |Xt|).
By Lemma 21, a positive valid changeset fetched at time t has to contain vt and is a single

tree cap. Such a tree cap has to be equal to Pt(u) for u being an ancestor of vt. Hence, we may

iterate over all ancestors u of vt, starting from the tree root and ending at vt, and we stop at

the first node u, for which Pt(u) is saturated (i.e., cntt(Pt(u)) ≥ |Pt(u)| ·α). If such a u is found,

the corresponding set Pt(u) satisfies also the maximality condition (cf. the definition of TC)

as all valid changesets that are supersets of Pt(u) were already verified to be non-saturated.

Therefore, in such a case, TC fetches Pt(u). Otherwise, if no saturated changeset is found, TC

does nothing. Checking all ancestors of vt can be performed in time O(h(T)).

4.5.2 Negative Requests and Evictions

Handling evictions is more complex. If the request to node vt at round t was negative,

Lemma 21 tells us only that the negative changeset evicted by TC has to be a tree cap rooted

at u, where u is the root of the cached tree containing vt. There are exponentially many such tree

4.5. IMPLEMENTATION OF TC 81

caps, and hence their näıve verification is intractable. To alleviate this problem, we introduce

the following helper notion. For any set of cached nodes A and any time t, let

valt(A) = cntt(A)− |A| · α+
|A|
|T |+ 1

.

Note that for any non-empty set A, valt(A) 6= 0 as the first two terms are integers and |A|/(|T |+
1) ∈ (0, 1). Furthermore, valt is additive: for two disjoint sets A and B, valt(A t B) =

valt(A) + valt(B). For any time t and a cached node u, we define

Ht(u) = arg max
D
{valt(D) : D is a non-empty tree cap

rooted at u}.

Our scheme maintains the value Ht(u) for any cached node u. To this end, we observe that

Ht(u) can be defined recursively as follows. Let H ′t(u) = Ht(u) if valt(Ht(u)) > 0 and H ′t(u) = ∅
otherwise. Then, for any node v and time t, by the additivity of valt,

Ht(u) = {u} t
⊔

w is a child of u

H ′t(w).

Each cached node u keeps the value valt(Ht(u)). Note that set Ht(u) itself can be recovered from

this information: we iterate over all children of u (at most deg(T) of them) and for each child

w, if valt(Ht(w)) > 0, we recursively compute set Ht(w). Thus, the total time for constructing

Ht(u) is O(deg(T) · |Ht(u)|).
During an execution of TC, we update stored values accordingly. That is, whenever

a counter at a cached node vt is incremented, we update valt(Ht(u)) values for each cached

ancestor u of vt, starting from u = vt and proceeding towards the cached tree root. Any such

update can be performed in constant time, and the total time is thus O(h(T)). For a cache

change, we process nodes from the changeset iteratively, starting with nodes closest to the root

in case of an eviction and furthest from the root in case of a fetch. For any such node u,

we appropriately stop or start maintaining the corresponding value of valt(Ht(u)). The latter

requires looking up the stored values at all its children. As u does not have cached ancestors,

sets Ht (and hence also the stored values) at other nodes remain unchanged. In total, the cost

of updating all Ht values at time t is at most O(h(T) + deg(T) · |Xt|).
Finally, we show how to use sets Ht to quickly choose a valid changeset for eviction. Recall

that for a negative request vt, the changeset to be evicted has to be a tree cap rooted at u, where

u is the root of a cached subtree containing vt. For succinctness, we use Hu to denote Ht(u).

We show that if valt(H
u) < 0, then there is no valid negative changeset that is saturated, and

hence TC does not perform any action, and if valt(H
u) > 0, then Hu is both saturated and

maximal, and hence TC may evict Hu.

1. First, assume that valt(H
u) < 0. Then, for any tree cap X rooted at u, it holds that

cntt(X)− |X| ·α < valt(X) ≤ valt(H
u) < 0, i.e., X is not saturated, and hence cannot be

evicted by TC.

2. Second, assume that valt(H
u) > 0. As cntt(H

u)−|Hu|·α is an integer and |Hu|/(|T |+1) <

1, it holds that cntt(H
u) − |Hu| · α ≥ 0, i.e., Hu is saturated. Moreover, by Lemma 21,

82 CHAPTER 4. CACHING OF ROUTING TABLES

cntt(H
u) ≤ |Hu| ·α, and therefore cntt(H

u)−|Hu| ·α = 0, i.e., valt(H
u) = |Hu|/(|T |+ 1).

It remains to show that Hu is maximal, i.e., there is no valid saturated changeset Y) Hu.

By Lemma 21, Y has to be a tree cap rooted at u as well. If Y was saturated, valt(Y) =

cntt(Y)−|Y | ·α+ |Y |/(|T |+ 1) ≥ |Y |/(|T |+ 1) > |Hu|/(|T |+ 1) = valt(H
u), which would

contradict the definition of Hu.

Note that node u can be found in time O(h(T)), and the actual set Hu (of size |Xt|)
can be computed in time O(deg(T) · |Xt|). Therefore the total time for finding set |Xt| is

O(h(T) + deg(T) · |Xt|).

4.6 Cache Updates with Fixed Cost

In this section, we present a formal argument showing why we can use any q-competitive

online algorithm AT for the tree caching problem to obtain a 2q-competitive online algorithm A

for the tree caching problem with updates with fixed cost α.

Namely, we take any input I for the latter problem and create, in online fashion, an input

IT for the tree caching problem. For any solution for IT , we may replay its actions (fetches and

evictions) on I and vice versa. However, there is one place, where these solutions may have

different costs. Recall that an update of a rule stored at node v in I is mapped to a chunk of

α negative requests to v in IT . It is then possible that an algorithm for IT modifies the cache

during a chunk. An algorithm that never performs such an action is called canonical.

To alleviate this issue, we first note that any algorithm B for IT can be transformed into

a canonical solution B′ by postponing all cache modifications that occur during some chunk to

the time right after it. Such a transformation may increase the cost of a solution on a chunk at

most by α and such an increase occurs only when B modifies a cache within this chunk. Hence,

the additional cost of transformation can be mapped to the already existing cost of B, and thus

the cost of B′ is at most by a factor of 2 larger than that of B.

Furthermore, note that there is a natural cost-preserving bijection between solutions to I and

canonical solutions to IT (solutions perform same cache modifications). Hence, the algorithm

A for I runs AT on IT , transforms it in an online manner into the canonical solution A′T (IT),

and replays its cache modification on I. Then, A(I) = A′T (IT) ≤ 2 · AT (IT) ≤ 2q ·Opt(IT) ≤
2q ·Opt(I).

The second inequality follows immediately by the q-competitiveness of AT . The third in-

equality follows by replaying cache modifications as well, but this time we take solution Opt(I)

and replay its actions on IT , creating a canonical (not necessarily optimal) solution of the same

cost.

4.7 Lower Bound on the Competitive Ratio

Theorem 17. For any α ≥ 1, the competitive ratio of any deterministic online algorithm for

the online tree caching problem is at least Ω(kONL/(kONL − kOPT + 1))

4.8. CONCLUSIONS 83

Proof. We will assume that in the tree caching problem, evictions are free (this changes the

cost by at most by a factor of two). We consider a tree whose leaves correspond to the set of

all pages in the paging problem. The rest of the tree will be irrelevant.

For any input sequence I for the paging problem, we may create a sequence IT for tree

caching, where a request to a page is replaced by α requests to the corresponding leaf. Now, we

claim that any solution A for I of cost c can be transformed, in online manner, into a solution

AT for IT of cost Θ(α · c) and vice versa.

If upon a request r, an algorithm A fetches r to the cache and evicts some pages, then AT

bypasses α corresponding requests to leaf r, fetches r afterwards and evicts the corresponding

leaves, paying O(α) times the cost of A. By doing it iteratively, AT ensures that its cache is

equivalent to that of A. In particular, a request free for A is also free for AT.

Now take any algorithm AT for IT. It can be transformed to the algorithm A′T that (i) keeps

only leaves of the tree in the cache and (ii) performs actions only at times that are multiplic-

ities of α (losing at most a constant factor in comparison to AT). Then, fix any chunk of α

requests to some leaf r′ immediately followed by some fetches and evictions of A′T leaves. Upon

seeing the corresponding request r′ in I, the algorithm A performs fetches and evictions on the

corresponding pages. In effect, the cost of A is O(1/α) times the cost of AT.

The bidirectional reduction described above preserves competitive ratios up to a constant

factor. Hence, applying the adversarial strategy for the paging problem that enforces the com-

petitive ratio R = kONL/(kONL − kOPT + 1) [ST85b] immediately implies the lower bound of

Ω(R) on the competitive ratio for the tree caching problem.

4.8 Conclusions

In this chapter we define a novel variant of online paging which finds applications in the

context of IP routing networks where forwarding rules can be cached. We presented a deter-

ministic online algorithm that achieves a provably competitive trade-off between the benefit of

caching and update costs.

It is worth noting that, in the offline setting, choosing the best static cache in the presence

of only positive requests is known as a tree sparsity problem and can be solved in O(|T |2)

time [BIS17].

We believe that our work opens interesting directions for future research. Most importantly,

it will be interesting to study the optimality of the derived result; we conjecture that the true

competitive ratio does not depend on the tree height. In particular, primal-dual approaches

that were successfully applied for other caching problems [You94, ACER12, BBN12] may turn

out to be useful also for the considered variant.

84 CHAPTER 4. CACHING OF ROUTING TABLES

Bibliography

[ABB+12] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anasta-

sia Ailamaki. NoDB: Efficient query execution on raw data files. In Proc. ACM

SIGMOD, pages 241–252, 2012.

[ACER12] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An O(log

k)-competitive algorithm for generalized caching. In 23rd ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 1681–1689, 2012.

[ACN00] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of

randomized paging algorithms. Theoretical Computer Science, 234(1–2):203–218,

2000.

[AKK99] Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approxi-

mation schemes for dense instances of NP-hard problems. Journal of Computer and

System Sciences, 58(1):193–210, 1999.

[ALPS16] Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid. Online balanced

repartitioning. International Conference on Distributed Computing, pages 243–256,

2016.

[ALV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-

modity data center network architecture. In Proc. ACM SIGCOMM, pages 63–74,

2008.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[AR06] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. Theory of

Computing Systems, 39(6):929–939, 2006.

[AWS] Amazon Web Services. URL: https://aws.amazon.com/ec2/.

[AZU] Microsoft Azure. URL: http://azure.microsoft.com.

[BBN12] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Randomized competitive algo-

rithms for generalized caching. SIAM Journal on Computing, 41(2):391–414, 2012.

[BCKR11] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Antony Rowstron. Towards

predictable datacenter networks. Proc. ACM SIGCOMM, 41(4):242–253, 2011.

85

https://aws.amazon.com/ec2/
http://azure.microsoft.com

86 BIBLIOGRAPHY

[BE98] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis.

Cambridge University Press, 1998.

[BGP] CIDR Report on BGP Table Size. URL: https://www.cidr-report.org/cgi-bin/

plota?file=%2fvar%2fdata%2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=

Active%20BGP%20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%

28FIB%29&with=step.

[BIS17] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree

sparsity in nearly-linear time. In Proc. 28th ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 2215–2229, 2017.

[BMP+17] Marcin Bienkowski, Jan Marcinkowski, Maciej Pacut, Stefan Schmid, and Aleksan-

dra Spyra. Online tree caching. ACM Symposium on Parallelism in Algorithms and

Architectures, pages 329–338, 2017.

[BRV] BGP statistics from route-views data. http://bgp.potaroo.net/bgprpts/rva-

index.html.

[BS13] Marcin Bienkowski and Stefan Schmid. Competitive FIB aggregation for indepen-

dent prefixes: Online ski rental on the trie. In Proc. 20th Int. Colloq. on Structural

Information and Communication Complexity (SIROCCO), volume 8179 of Lecture

Notes in Computer Science, pages 92–103. Springer, 2013.

[BSSU14] Marcin Bienkowski, Nadi Sarrar, Stefan Schmid, and Steve Uhlig. Competitive FIB

aggregation without update churn. In Proc. 34th IEEE Int. Conf. on Distributed

Computing Systems (ICDCS), pages 607–616, 2014.

[BUP] The BGP instability report. URL: http://bgpupdates.potaroo.net/

instability/bgpupd.html.

[CKH+00] Pierluigi Crescenzi, Viggo Kann, Magnus Halldorsson, Marek Karpinski, and Ger-

hard Woeginger. Maximum 3-dimensional matching. A Compendium of NP Opti-

mization Problems, 2000.

[CKPV91] Marek Chrobak, Howard J. Karloff, Thomas H. Payne, and Sundar Vishwanathan.

New results on server problems. SIAM Journal on Discrete Mathematics, 4(2):172–

181, 1991. Also appeared in Proc. of the 1st SODA, pages 291–300, 1990.

[CMU+10] Luca Cittadini, Wolfgang Muhlbauer, Steve Uhlig, Randy Bushy, Pierre Francois,

and Olaf Maennel. Evolution of internet address space deaggregation: myths and

reality. IEEE Journal of Selected Areas in Communications, 28(8):1238–1249, 2010.

[CZM+11] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing Data

Transfers in Computer Clusters with Orchestra. Proc. ACM SIGCOMM, 41(4):98–

109, 2011.

https://www.cidr-report.org/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=Active%20BGP%20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%28FIB%29&with=step
https://www.cidr-report.org/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=Active%20BGP%20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%28FIB%29&with=step
https://www.cidr-report.org/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=Active%20BGP%20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%28FIB%29&with=step
https://www.cidr-report.org/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=Active%20BGP%20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%28FIB%29&with=step
http://bgp.potaroo.net/bgprpts/rva-index.html
http://bgp.potaroo.net/bgprpts/rva-index.html
http://bgpupdates.potaroo.net/instability/bgpupd.html
http://bgpupdates.potaroo.net/instability/bgpupd.html

BIBLIOGRAPHY 87

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on

large clusters. In Proc. USENIX OSDI, pages 137–150, 2004.

[DKVZ99] Richard P. Draves, Christopher King, Srinivasan Venkatachary, and Brian D. Zill.

Constructing optimal IP routing tables. In Proc. IEEE Int. Conference on Computer

Communications (INFOCOM), pages 88–97, 1999.

[DS12] Ran Duan and Hsin-Hao Su. A scaling algorithm for maximum weight matching

in bipartite graphs. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 1413–1424, 2012.

[EGOS05] Friedrich Eisenberg, Fabrizio Grandoni, Gianpaolo Oriolo, and Martin Skutella.

New Approaches for Virtual Private Network Design . Int. Colloq. on Automata,

Languages and Programming (ICALP), pages 1151–1162, 2005.

[EILN15] Leah Epstein, Csanád Imreh, Asaf Levin, and Judit Nagy-György. Online file

caching with rejection penalties. Algorithmica, 71(2):279–306, 2015.

[EILNG11] Leah Epstein, Csanád Imreh, Asaf Levin, and Judit Nagy-György. On variants of

file caching. In Proc. 38th Int. Colloq. on Automata, Languages and Programming

(ICALP), pages 195–206, 2011.

[ENRS99] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Fast approximate graph

partitioning algorithms. SIAM Journal on Computing, 28(6):2187–2214, 1999.

[ENRS00] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer

approximation algorithms via spreading metrics. Journal of the ACM, 47(4):585–

616, 2000.

[EXH] ACL and QoS TCAM Exhaustion Avoidance. URL: https://www.cisco.com/

c/en/us/support/docs/switches/catalyst-4000-series-switches/66978-

tcam-cat-4500.html.

[FBB+13] Andreas Fischer, Juan Botero, Michael Beck, Hermann DeMeer, and Xavier Hessel-

bach. Virtual network embedding: A survey. IEEE Communications Surveys and

Tutorials, 15(4):1888–1906, 2013.

[FK02] Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of the

minimum bisection. SIAM Journal on Computing, 31(4):1090–1118, 2002.

[FKL+91] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator,

and Neal E. Young. Competitive paging algorithms. Journal of Algorithms,

12(4):685–699, 1991.

[FKN00] Uriel Feige, Robert Krauthgamer, and Kobbi Nissim. Approximating the minimum

bisection size (extended abstract). In Proc. 32nd ACM Symposium on Theory of

Computing (STOC), pages 530–536, 2000.

https://www.cisco.com/c/en/us/support/docs/switches/catalyst-4000-series-switches/66978-tcam-cat-4500.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-4000-series-switches/66978-tcam-cat-4500.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-4000-series-switches/66978-tcam-cat-4500.html

88 BIBLIOGRAPHY

[FOST10] Samuel Fiorini, Gianpaolo Oriolo, Laura Sanità, and Dirk Oliver Theis. The VPN

Problem with Concave Costs. SIAM Journal of Discrete Mathematics. 24(3), pages

1080–1090, 2010.

[FPCS15] Carlo Fuerst, Maciej Pacut, Paolo Costa, and Stefan Schmid. How hard can it

be? Understanding the complexity of replica aware virtual cluster embeddings.

International Conference on Network Protocols (ICNP), pages 11–21, 2015.

[FPS17] Carlo Fuerst, Maciej Pacut, and Stefan Schmid. Data locality and replica aware

virtual cluster embeddings. Journal of Theoretical Computer Science 697, pages

37–57, 2017.

[FSSC16] Carlo Fuerst, Stefan Schmid, Lalith Suresh, and Paolo Costa. Kraken: Online

and elastic resource reservations for multi-tenant datacenters. Journal IEEE/ACM

Transactions on Networking (TON), 26(1):422–435, 2016.

[Gab85] H.N. Gabow. A scaling algorithm for weighted matching on general graphs.

SFCS ’85 Proc. of the 26th Annual Symposium on Foundations of Computer Sci-

ence, pages 90–100, 1985.

[GCE] Google Compute Engine. URL: http://cloud.google.com.

[GJS76] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some Simplified NP-

Complete Graph Problems. Theoretical Computer Science, 1(3):237–267, 1976.

[GKK+01] Anupam Gupta, Jon Kleinberg, Amit Kumar, Rajeev Rastogi, and Bulent Yener.

Provisioning a virtual private network. Proc. ACM Symposium on Theory of Com-

puting (STOC), pages 389–398, 2001.

[GKR03] Anupam Gupta, Amit Kumar, and Tim Roughgarden. Simpler and better approx-

imation algorithms for network design. Proc. of the ACM symposium on Theory of

Computing (STOC), pages 365–372, 2003.

[GLW+10] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, Peng

Sun, Wenfei Wu, and Yongguang Zhang. SecondNet: A data center network virtu-

alization architecture with bandwidth guarantees. In Proc. ACM CoNEXT, pages

101–112, 2010.

[GOS08] Navin Goyal, Neil Olver, and F B. Shepherd. The VPN conjecture is true. In Proc.

40th Annual ACM Symposium on Theory of Computing (STOC), pages 443–450,

2008.

[GT89] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations

by canceling negative cycles. ACM Symposium on Theory of Computing (STOC),

36(4):873–886, 1989.

[HyV] Hyper-V. URL: https://www.microsoft.com/en-us/cloud-platform/server-

virtualization.

http://cloud.google.com
https://www.microsoft.com/en-us/cloud-platform/server-virtualization
https://www.microsoft.com/en-us/cloud-platform/server-virtualization

BIBLIOGRAPHY 89

[Ira02] Sandy Irani. Page replacement with multi-size pages and applications to web

caching. Algorithmica, 33(3):384–409, 2002.

[KARW16] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Cacheflow:

Dependency-aware rule-caching for software-defined networks. In Proc. ACM Sym-

posium on SDN Research (SOSR), 2016.

[KCGR09] Changhoon Kim, Matthew Caesar, Alexandre Gerber, and Jennifer Rexford. Revis-

iting route caching: The world should be flat. In Proc. 10th Int. Conf. on Passive

and Active Network Measurement (PAM), pages 3–12, 2009.

[KCR+12] Elliott Karpilovsky, Matthew Caesar, Jennifer Rexford, Aman Shaikh, and Ja-

cobus E. van der Merwe. Practical network-wide compression of IP routing tables.

IEEE Transactions on Network and Service Management, 9(4):446–458, 2012.

[KF06] Robert Krauthgamer and Uriel Feige. A polylogarithmic approximation of the

minimum bisection. SIAM Review, 48(1):99–130, 2006.

[KK12] Zoltan Kiraly and Peter Kovacs. Efficient implementations of minimum-cost flow

algorithms. In ArXiv Technical Report 1207.6381, 2012.

[KNS09] Robert Krauthgamer, Joseph Naor, and Roy Schwartz. Partitioning graphs into bal-

anced components. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 942–949, 2009.

[KVM] Kernel-based Virtual Machine. URL: http://www.linux-kvm.org.

[Lei85] Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient super-

computing. IEEE Transactions on Computers, 34(10):892–901, 1985.

[Liu01] Huan Liu. Routing prefix caching in network processor design. In Proc. 10th Int.

Conf. on Computer Communications and Networks (ICCCN), pages 18–23, 2001.

[LLW15] Yaoqing Liu, Vince Lehman, and Lan Wang. Efficient FIB caching using minimal

non-overlapping prefixes. Computer Networks, 83:85–99, 2015.

[LMT90] T. Leighton, F. Makedon, and S. G. Tragoudas. Approximation algorithms for

VLSI partition problems. In Proc. IEEE International Symposium on Circuits and

Systems (ISCAS), volume 4, pages 2865–2868, 1990.

[LXS+13] Layong Luo, Gaogang Xie, Kavé Salamatian, Steve Uhlig, Laurent Mathy, and

Yingke Xie. A trie merging approach with incremental updates for virtual routers.

In Proc. 32nd IEEE Int. Conf. on Computer Communications (INFOCOM), pages

1222–1230, 2013.

[LZN+10] Yaoqing Liu, Xin Zhao, Kyuhan Nam, Lan Wang, and Beichuan Zhang. Incre-

mental forwarding table aggregation. In Proc. Global Communications Conference

(GLOBECOM), pages 1–6, 2010.

http://www.linux-kvm.org

90 BIBLIOGRAPHY

[LZW13] Yaoqing Liu, Beichuan Zhang, and Lan Wang. Fast incremental FIB aggregation.

pages 1213–1221, 2013.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-

son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling

innovation in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74,

2008. doi:http://www.openflowswitch.org.

[MEC] Measuring EC2 system performance. http://goo.gl/V5zhEd.

[MP12] Jeffrey C. Mogul and Lucian Popa. What we talk about when we talk about cloud

network performance. SIGCOMM CCR, 42(5):44–48, 2012.

[MS91] Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized paging

algorithm. Algorithmica, 6(6):816–825, 1991.

[PKC+12] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia

Ratnasamy, and Ion Stoica. Faircloud: sharing the network in cloud computing.

Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, pages 187–198, 2012.

[PS06] K. Pagiamtis and A. Sheikholeslami. Content-Addressable Memory (CAM) circuits

and architectures: a tutorial and survey. IEEE Journal of Solid-State Circuits.

41(3), pages 712–727, 2006.

[PYB+13] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul, Yoshio

Turner, and Jose Renato Santos. Elasticswitch: Practical work-conserving band-

width guarantees for cloud computing. In Proc. ACM SIGCOMM, pages 351–362,

2013.

[Räc08] Harald Räcke. Optimal hierarchica decompositions for congestion minimization in

networks. In Proc. 40th ACM Symposium on Theory of Computing (STOC), pages

255–264, 2008.

[RFS15] Matthias Rost, Carlo Fuerst, and Stefan Schmid. Beyond the stars: Revisiting vir-

tual cluster embeddings. Proc. ACM SIGCOMM Computer Communication Review

(CCR), 45(3):12–18, 2015.

[RR04] Satish Rao and Andréa W. Richa. New Approximation Techniques for Some Linear

Ordering Problems. SIAM Journal on Computing. 34(2), pages 388–404, 2004.

[RST+11] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dorgival

Guedes. Gatekeeper: Supporting bandwidth guarantees for multi-tenant datacenter

networks. In Proc. 3rd Conference on I/O Virtualization (WIOV), pages 6–6, 2011.

[RTK+13] Gábor Rétvári, János Tapolcai, Attila Korösi, András Majdán, and Zalán

Heszberger. Compressing IP forwarding tables: towards entropy bounds and be-

yond. In Proc. ACM SIGCOMM Conference, pages 111–122, 2013.

http://dx.doi.org/http://www.openflowswitch.org
http://goo.gl/V5zhEd

BIBLIOGRAPHY 91

[RVR+07] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum, and

Alex C. Snoeren. Cloud control with distributed rate limiting. In Proc. ACM

SIGCOMM, pages 337–348, 2007.

[SKGK10] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. Seawall:

Performance isolation for cloud datacenter networks. In Proc. USENIX HotCloud,

pages 1–1, 2010.

[SSW03] Subhash Suri, Tuomas Sandholm, and Priyank Ramesh Warkhede. Compressing

two-dimensional routing tables. Algorithmica, 35(4):287–300, 2003.

[ST85a] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and

paging rules. Communications of the ACM, 28(2):202–208, 1985.

[ST85b] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and

paging rules. Communications of the ACM, 28(2):202–208, 1985.

[ST97] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? SIAM

Journal on Computing, 18(5):1436–1445, 1997.

[STT03] Ed Spitznagel, David E. Taylor, and Jonathan S. Turner. Packet classification using

extended tcams. In Proc. 11th IEEE Int. Conf. on Network Protocols (ICNP), pages

120–131, 2003.

[SUF+12] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin Huang. Lever-

aging Zipf’s law for traffic offloading. ACM SIGCOMM Computer Communication

Review, 42(1):16–22, 2012.

[SV95] Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice the optimal. SIAM

Journal on Computing, 24(1):101–108, 1995.

[Tar85] Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Combina-

torica, 5(3):247–255, July 1985.

[UNT+11] Zartash Afzal Uzmi, Markus Nebel, Ahsan Tariq, Sana Jawad, Ruichuan Chen,

Aman Shaikh, Jia Wang, and Paul Francis. SMALTA: Practical and near-optimal

FIB aggregation. In Proc. of the 7th Int. Conference on Emerging Networking

Experiments and Technologies (CoNEXT), 2011.

[VME] VMware ESXi. URL: http://vmware.com/products/esxi-and-esx/.

[XDHK12] Di Xie, Ning Ding, Y Charlie Hu, and Ramana Kompella. The only constant is

change: incorporating time-varying network reservations in data centers. ACM

SIGCOMM Computer Communication Review (CCR), pages 199–210, 2012.

[XEN] Xen Project. URL: http://www.xenproject.org.

http://vmware.com/products/esxi-and-esx/
http://www.xenproject.org

92 BIBLIOGRAPHY

[XRZ+13] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker,

and Ion Stoica. Shark: SQL and Rich Analytics at Scale. In Proc. ACM SIGMOD,

pages 13–24, 2013.

[You94] Neal E. Young. The k-server dual and loose competitiveness for paging. Algorith-

mica, 11(6):525–541, 1994.

[You02] Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002. Also ap-

peared in Proc. of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 82–86, 1998.

[ZLWZ10] Xin Zhao, Yaoqing Liu, Lan Wang, and Beichuan Zhang. On the aggregatability

of router forwarding tables. In Proc. 29th IEEE Int. Conference on Computer

Communications (INFOCOM), pages 848–856, 2010.

	Introduction
	Machine Virtualization in Data Centers
	Machine Migration
	Virtual Network Embedding
	Our Contributions
	Related Work

	Router Memory Optimization
	Forwarding Tables
	Growth of the Internet
	Our Contributions
	Related Work

	Bibliographic notes and acknowledgements

	I Mapping Virtual Networks
	Virtual Networks with Static Topology
	Problem Definition
	Optimization Objective
	Problem Decomposition

	Polynomial-Time Algorithms
	Flow Algorithms
	Matching Algorithms
	Dynamic Programming
	Simple Problems

	NP-Hardness Results
	Introduction to 3D Perfect Matching
	Hardness of Multi-Assignments
	Hardness of Inter-connects

	A Detailed Study of Replica Selection Hardness
	Two Replicas without Bandwidth Constraints
	Two replicas without Multiple Assignment

	Conclusions

	Virtual Networks with Dynamic Topology
	Problem Definition
	A Simple Upper Bound
	Algorithm Crep
	Algorithm Definition
	Analysis: Structural Properties
	Analysis: Lower Bound on OPT
	Analysis: Upper Bound on CREP
	Analysis: Competitive Ratio

	Online Rematching
	Greedy Algorithm
	Analysis

	Lower Bounds
	Lower Bound by Reduction to Online Paging
	Additional Lower Bounds

	Conclusions

	II Managing Resources in Routers
	Caching of Routing Tables
	Problem Definition
	Algorithm
	Analysis of TC
	Event Space and Fields
	Shifting Requests
	Competitive Ratio

	No over-requested changesets
	Implementation of TC
	Positive Requests and Fetches
	Negative Requests and Evictions

	Cache Updates with Fixed Cost
	Lower Bound on the Competitive Ratio
	Conclusions

