

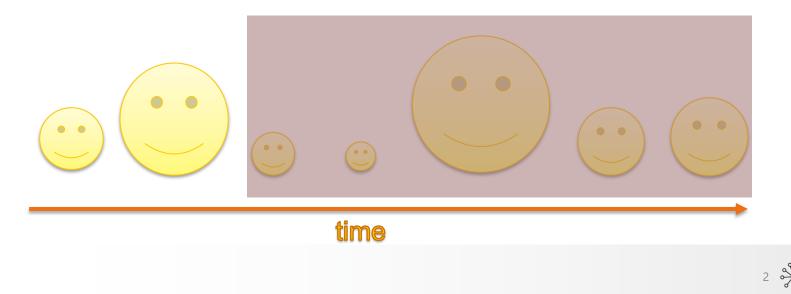
Secretary problem: Towards better bounds with ML advice

Arash Pourdamghani

Net-theory seminar Spring 2022

Introduction to secretary problem

- ► A selection problem:
 - Committing to a choice before knowing all possibilites
 - Examples:
 - Finding love of you life! (ted.com/talks/hannah_fry_the_mathematics_of_love)
 - Choosing toilet at a concert! (youtube.com/watch?v=ZWib5olGbQ0)
 - Finding a student for PostDoc (vanderbei.princeton.edu/tex/PostdocProblem/PostdocProb.pdf)
 - Finding the best house: (davidwees.com/content/how-i-used-mathematicschoose-my-next-apartment/)



Introduction to secretary problem

- ► A selection problem:
 - Committing to a choice before knowing all possibilites
 - Examples:
 - Finding love of you life! (ted.com/talks/hannah_fry_the_mathematics_of_love)
 - Choosing toilet at a concert! (youtube.com/watch?v=ZWib5olGbQ0)
 - Finding a student for PostDoc (vanderbei.princeton.edu/tex/PostdocProblem/PostdocProb.pdf)
 - Finding the best house: (davidwees.com/content/how-i-used-mathematicschoose-my-next-apartment/)
- Basics:
 - Given *n* candidates with previously unknown values $v_1, \dots, v_n \in \mathcal{R}$
 - The value of candidates is reveled in the same order
 - After seeing the *i*-th candidate, you either accept it or reject it

Possible goals

- Maximizing the probability of choosing the best possible candidate
 - Original Problem
- Maximizing the probability of choosing second best candidate
 - Postdoc problem
- Maximizing the expected value of chosen candidate
 - Value maximization variation
 - Any α-approximation for the classical secretary problem yields an αapproximation for the value-maximization variant.
- K-secretary problem
 - Maximizing sum, application in online auction (Kleinberg, SODA 2005)
 - Graphic matroid: select a subset of edges of maximum weight under the constraint that this subset is a forest (Kleinberg et. al., SODA 2007)

Possible arrival model

- Adversarial:
 - No deterministic algorithm better than 0-competitive
 - Randomized algorithm
 - There is $\frac{1}{n}$ -randomized algorithm (for both expected cost and best candidate)
 - No randomized algorithm can do better than $\frac{1}{n}$ (Based on Yao's principle)
- Random arrival:
 - There is an algorithm that selects the maximum with probability $\frac{1}{e}$
- Non-uniform arrival:
 - We can still approach $\frac{1}{e}$ (Kleinberg et. al., STOC 2015)

Yao's principle

Let A be a random variable with values in class of all deterministic algorithms A', and let X be a random variable with values in class of all instances X', and g as a gain function.

► Then:

$$\min_{x \in \mathcal{X}'} \mathbb{E}[g(A, x)] \le \max_{a \in \mathcal{A}'} \mathbb{E}[g(a, X)]$$

► Proof:

Yao's principle

Let A be a random variable with values in class of all deterministic algorithms A', and let X be a random variable with values in class of all instances X', and g as a gain function.

► Then:

$$\min_{x \in \mathcal{X}'} \mathbb{E}[g(A, x)] \le \max_{a \in \mathcal{A}'} \mathbb{E}[g(a, X)]$$

Proof:

- $E[g(a,X)] = \sum_{x \in \mathcal{X}'} P[X = x]g(a,x), E[g(A,x)] = \sum_{a \in \mathcal{A}'} P[A = a]g(a,x)$
- The weighted average is upper-bounded by its maximum value, and vice versa
 - $-\min_{x\in\mathcal{X}'} \mathbb{E}[g(A,x)] \le \sum_{x\in\mathcal{X}'} P[X=x] \sum_{a\in\mathcal{A}'} P[A=a] g(a,x)$
 - $-\sum_{a \in \mathcal{A}'} P[A = a] \sum_{x \in \mathcal{X}'} P[X = x] g(a, x) \le \max_{a \in \mathcal{A}'} E[g(a, X)]$

Choosing best candidate

No randomized algorithm guarantees to select the best candidate with probability more than $\frac{1}{n}$.

Choosing best candidate

- No randomized algorithm guarantees to select the best candidate with probability more than $\frac{1}{n}$.
 - Define gain function as indicator random function based on selecting the best value
 - Based on Yao's principle, it is enough to show that there is a probability distribution over instances *X* such that $\max_{a \in \mathcal{A}'} E[g(a, X)] = \frac{1}{n}$
 - Fix an arbtriary algorithm a, and assume $x^{(t)} = (1, 2, ..., t, 0, ..., 0)$
 - Let T be drawn uniformly at random from 1, ..., n and set $X = x^{(T)}$.

Choosing best candidate

- No randomized algorithm guarantees to select the best candidate with probability more than $\frac{1}{n}$.
 - Define gain function as indicator random function based on selecting the best value
 - Based on Yao's principle, it is enough to show that there is a probability distribution over instances *X* such that $\max_{a \in A'} E[g(a, X)] = \frac{1}{n}$
 - Fix an arbtriary algorithm a, and assume $x^{(t)} = (1, 2, ..., t, 0, ..., 0)$
 - Let T be drawn uniformly at random from 1, ..., n and set $X = x^{(T)}$.
 - Consider an arbitrary deterministic algorithm *a* on sequence x⁽ⁿ⁾
 = (1,2 ..., n), and selection s.
 - For another sequence:
 - if, $s \le t$, then the algorithm will make exactly the same decisions because sequences $x^{(t)}$ and $x^{(n)}$ look the same until position t.
 - If s > t, then the algorithm selects 0.

$$E[g(a, X)] = E[g(a, x^{(t)})] = \Pr(s = t) = \frac{1}{n}$$

Getting maximum expected value

▶ No randomized algorithm give us higher value than $\frac{1}{n}OPT$.

Getting maximum expected value

▶ No randomized algorithm give us higher value than $\frac{1}{n}OPT$.

- Proof by contradiction, assume an algorithm with ratio $\frac{1}{n} + \epsilon$
- Set $M = \frac{2}{\epsilon}$
- Assume $x^{(t)} = (1, M, M^2, ..., M^t, 0, ... 0)$
- Let v^* denote the maximum value given by this sequence, our algorithm either selects it or otherwise the cost is at most $\frac{v^*}{M}$
- $v^*(\frac{1}{n} + \epsilon) \le E[v(ALG)] \le v^* \Pr[A \text{ selects maximum element}] + \frac{v^*}{M}$
- $\frac{1}{n} + \epsilon \frac{\epsilon}{2} \le \Pr[A \text{ selects maximum element}] \rightarrow \text{contradiction} \bigcirc$

The old algorithm for random arrival model

Algorithm: Say no to the first $\frac{n}{x}$ candidates, then select the one which has better value than the first $\frac{n}{x}$ candidates.

The old algorithm for random arrival model

- Algorithm: Say no to the first $\frac{n}{x}$ candidates, then select the one which has better value than the first $\frac{n}{x}$ candidates
 - Proof: Let us define probability p_i of the *i*-th candidate be in the first segment, and the best one is before the (*i* 1) good ones in the second segment.

The old algorithm for random arrival model

- Algorithm: Say no to the first $\frac{n}{x}$ candidates, then select the one which has better value than the first $\frac{n}{x}$ candidates
 - Proof: Let us define probability p_i of the *i*-th candidate be in the first segment, and the best one is before the (i 1) good ones in the second segment.

 $p_i = p[i \text{ in the first segment}].$ p[i-1 in the second segment|i in the first segment]. $p[i-2 \text{ in the second segment}|i \text{ in first}, i-1 \text{ in second segment}] \dots$ p[best candidate before i - 2th, ..., 2nd best candidates] $= x \cdot \left(\prod_{i=0}^{i-2} (1-x) \cdot \frac{n}{n-j-1} - \frac{j}{n-j-1} \right) \cdot \frac{1}{i-1}$ $\lim_{n \to \infty} p_i = x \cdot \left(\prod_{i=0}^{i-2} (1-x) \right) \cdot \frac{1}{i-1}$ $p_{success} = \sum_{i=1}^{n} p_i = \sum_{i=1}^{n} \frac{x}{i} (1-x)^i = -x ln(x)$ Maximizes for $x = \frac{1}{a}$

- ▶ Predicting the maximum value, g^*
- $\triangleright \lambda$ is the confidence of the predictions
- c describes to lose in the worst case
- $\exp\{W_{-1}(-1/(ce))\}$ and $\exp\{W_0(-1/(ce))\}$ are solution to $-x\ln(x)$ = $\frac{1}{ce}$

ALGORITHM 1: Value-maximization secretary algorithm Input : Prediction p^* for (unknown) value max_i v_i ; confidence parameter $0 \le \lambda \le p^*$ and $c \ge 1$. Output: Element a. Set v' = 0. Phase I: for $i = 1, ..., \lfloor \exp\{W_{-1}(-1/(ce))\} \cdot n \rfloor$ do Set $v' = \max\{v', v_i\}$ end Set $t = \max\{v', p^* - \lambda\}$. Phase II: for $i = |\exp\{W_{-1}(-1/(ce))\} \cdot n| + 1, \dots, |\exp\{W_0(-1/(ce))\} \cdot n|$ do if $v_i > t$ then Select element a_i and STOP. end end Set $t = \max\{v_j : j \in \{1, ..., \lfloor \exp(W_0(-1/(ce))) \cdot n \rfloor\}\}$. Phase III: for $i = |\exp\{W_0(-1/(ce))\} \cdot n| + 1, ..., n$ do if $v_i > t$ then Select element a_i and STOP. end end

▶ Theorem, Algorithm is $g_{c,\lambda}(\eta) - competive$, where $g_{c,\lambda}(\eta)$ is:

$$g_{c,\lambda}(\eta) = \left\{ \begin{array}{ll} \max\left\{\frac{1}{ce}, \left[f(c)\left(\max\left\{1-\frac{\lambda+\eta}{OPT}, 0\right\}\right)\right]\right\} & \text{if } 0 \le \eta < \lambda \\ \frac{1}{ce} & \text{if } \eta \ge \lambda \end{array} \right\}$$

And f(c) is:

$$f(c) = \exp\{W_0(-1/(ce))\} - \exp\{W_{-1}(-1/(ce))\}.$$

▶ Theorem, Algorithm is $g_{c,\lambda}(\eta) - competive$, where $g_{c,\lambda}(\eta)$ is:

$$g_{c,\lambda}(\eta) = \left\{ \begin{array}{ll} \max\left\{\frac{1}{ce}, \left[f(c)\left(\max\left\{1-\frac{\lambda+\eta}{OPT}, 0\right\}\right)\right]\right\} & \text{if } 0 \le \eta < \lambda \\ \frac{1}{ce} & \text{if } \eta \ge \lambda \end{array} \right\}$$

▶ Proof: In the worst-case we are always $\frac{1}{ce}$ -competitive:

- $p^* \lambda > OPT$: Never goes to step two, similar to previous proof
- p^{*} − λ ≤ OPT: estimation was not higher than opt, then from the fact answer, and any α-approximation for the classical secretary problem yields an α-approximation for the value-maximization variant.

▶ Theorem, Algorithm is $g_{c,\lambda}(\eta) - competive$, where $g_{c,\lambda}(\eta)$ is:

$$g_{c,\lambda}(\eta) = \begin{cases} \max\left\{\frac{1}{ce}, \left[f(c)\left(\max\left\{1-\frac{\lambda+\eta}{OPT}, 0\right\}\right)\right]\right\} & \text{if } 0 \le \eta < \lambda \\ \frac{1}{ce} & \text{if } \eta \ge \lambda \end{cases} \end{cases}$$

- ▶ When the error is low, then:
- P^{*} > OPT: we have g^{*} − λ < OPT, Since OPT appears in Phase II with probability f(c), we in particular pick some element in Phase II with value at least OP T − λ with probability f(c).
- With probability f(c) we will pick some element with value at least $OPT \lambda \eta$. To see this, note that in the worst case we would have $g^* = OPT \eta$, and we could select an element with value $g^* \lambda$, which means that the value of the selected item is OP T $\lambda \eta$.

Thank you 🙂

