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Introduction to secretary problem

u A selection problem:
§ Committing to a choice before knowing all possibilites
§ Examples:

– Finding love of you life! (ted.com/talks/hannah_fry_the_mathematics_of_love)
– Choosing toilet at a concert! (youtube.com/watch?v=ZWib5olGbQ0)
– Finding a student for PostDoc

(vanderbei.princeton.edu/tex/PostdocProblem/PostdocProb.pdf)
– Finding the best house: (davidwees.com/content/how-i-used-mathematics-

choose-my-next-apartment/)
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Introduction to secretary problem

u A selection problem:
§ Committing to a choice before knowing all possibilites
§ Examples:

– Finding love of you life! (ted.com/talks/hannah_fry_the_mathematics_of_love)
– Choosing toilet at a concert! (youtube.com/watch?v=ZWib5olGbQ0)
– Finding a student for PostDoc

(vanderbei.princeton.edu/tex/PostdocProblem/PostdocProb.pdf)
– Finding the best house: (davidwees.com/content/how-i-used-mathematics-

choose-my-next-apartment/)

u Basics:
§ Given 𝑛 candidates with previously unknown values 𝑣!, … , 𝑣" ∈ ℛ
§ The value of candidates is reveled in the same order
§ After seeing the 𝑖-th candidate, you either accept it or reject it
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Possible goals

u Maximizing the probability of choosing the best possible candidate
§ Original Problem

u Maximizing the probability of choosing second best candidate
§ Postdoc problem

u Maximizing the expected value of chosen candidate 
§ Value maximization variation
§ Any α-approximation for the classical secretary problem yields an α-

approximation for the value-maximization variant.
u K-secretary problem 

§ Maximizing sum, application in online auction (Kleinberg, SODA 2005)
§ Graphic matroid: select a subset of edges of maximum weight under 

the constraint that this subset is a forest (Kleinberg et. al., SODA 2007)
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Possible arrival model

u Adversarial:
§ No deterministic algorithm better than 0-competitive 
§ Randomized algorithm

– There is !
"
−randomized algorithm (for both expected cost and best candidate)

– No randomized algorithm can do better than !
"

(Based on Yao’s principle)

u Random arrival:
§ There is an algorithm that selects the maximum with probability !

#

u Non-uniform arrival:
§ We can still approach !

#
(Kleinberg et. al., STOC 2015)
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Yao’s principle

u Let 𝐴 be a random variable with values in class of all deterministic 
algorithms 𝒜", and let X be a random variable with values in class 
of all instances 𝒳", and 𝑔 as a gain function.

u Then: 
min E
#∈𝒳!

[𝑔 𝐴, 𝑥 ] ≤ m𝑎𝑥
&∈𝒜!

𝐸[𝑔 𝑎, 𝑋 ]

u Proof:
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Yao’s principle

u Let 𝐴 be a random variable with values in class of all deterministic 
algorithms 𝒜", and let X be a random variable with values in class 
of all instances 𝒳", and 𝑔 as a gain function.

u Then: 
min E
#∈𝒳!

[𝑔 𝐴, 𝑥 ] ≤ m𝑎𝑥
&∈𝒜!

𝐸[𝑔 𝑎, 𝑋 ]

u Proof:
§ 𝐸[𝑔 𝑎, 𝑋 ] = ∑$∈𝒳# 𝑃 𝑋 = 𝑥 𝑔(𝑎, 𝑥), 𝐸[𝑔 𝐴, 𝑥 ] = ∑'∈𝒜# 𝑃 𝐴 = 𝑎 𝑔(𝑎, 𝑥)
§ The weighted average is upper-bounded by its maximum value, and 

vice versa
– min E

$∈𝒳!
[𝑔 𝐴, 𝑥 ] ≤ ∑$∈𝒳! 𝑃 𝑋 = 𝑥 ∑'∈𝒜! 𝑃 𝐴 = 𝑎 𝑔(𝑎, 𝑥)

– ∑'∈𝒜! 𝑃 𝐴 = 𝑎 ∑$∈𝒳! 𝑃 𝑋 = 𝑥 𝑔(𝑎, 𝑥) ≤ m𝑎𝑥
'∈𝒜!

𝐸[𝑔 𝑎, 𝑋 ]
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Choosing best candidate

u No randomized algorithm guarantees to select the best candidate 
with probability more than <

=
.
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Choosing best candidate

u No randomized algorithm guarantees to select the best candidate 
with probability more than <

=
.

§ Define gain function as indicator random function based on selecting 
the best value

§ Based on Yao’s principle, it is enough to show that there is a probability 
distribution over instances 𝑋 such that m𝑎𝑥

'∈𝒜#
𝐸[𝑔 𝑎, 𝑋 ] = !

"

§ Fix an arbtriary algorithm 𝑎, and  assume 𝑥(*) = (1,2, … , 𝑡, 0, … , 0)
§ Let 𝑇 be drawn uniformly at random from 1, . . . , 𝑛 and set 𝑋 = 𝑥(,).
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Choosing best candidate

u No randomized algorithm guarantees to select the best candidate 
with probability more than <

=
.

§ Define gain function as indicator random function based on selecting 
the best value

§ Based on Yao’s principle, it is enough to show that there is a probability 
distribution over instances 𝑋 such that m𝑎𝑥

'∈𝒜#
𝐸[𝑔 𝑎, 𝑋 ] = !

"

§ Fix an arbtriary algorithm 𝑎, and  assume 𝑥(*) = (1,2, … , 𝑡, 0, … , 0)
§ Let 𝑇 be drawn uniformly at random from 1, . . . , 𝑛 and set 𝑋 = 𝑥(,).
§ Consider an arbitrary deterministic algorithm 𝑎 on sequence 𝑥(")
= 1,2… , 𝑛 , and selection 𝑠.

§ For another sequence:
– if, 𝑠 ≤ 𝑡, then the algorithm will make exactly the same decisions because 

sequences 𝑥(*) and 𝑥(") look the same until position t. 
– If 𝑠 > 𝑡, then the algorithm selects 0.
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Getting maximum expected value

u No randomized algorithm give us higher value than <
=
𝑂𝑃𝑇.
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Getting maximum expected value

u No randomized algorithm give us higher value than <
=
𝑂𝑃𝑇.

§ Proof by contradiction, assume an algorithm with ratio !
"
+ 𝜖

§ Set 𝑀 = .
/

§ Assume 𝑥(*) = (1,𝑀,𝑀., … ,𝑀* , 0, … 0)
§ Let 𝑣∗ denote the maximum value given by this sequence, our algorithm 

either selects it or otherwise the cost is at most 1
∗

2

§ 𝑣∗(!
"
+ 𝜖) ≤ 𝐸 𝑣 𝐴𝐿𝐺 ≤ 𝑣∗ Pr 𝐴 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 + 1∗

2

§
!
"
+ 𝜖 − /

.
≤ Pr 𝐴 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 -> contradiction J
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The old algorithm for random arrival model

u Algorithm: Say no to the first =
#

candidates, then select the one 
which has better value than the first =

#
candidates.
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The old algorithm for random arrival model

u Algorithm: Say no to the first =
#

candidates, then select the one 
which has better value than the first =

#
candidates 

§ Proof: Let us define probability 𝑝3 of the 𝑖-th candidate be in the first 
segment, and the best one is before the (𝑖 − 1) good ones in the 
second segment.
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The old algorithm for random arrival model

u Algorithm: Say no to the first =
#

candidates, then select the one 
which has better value than the first =

#
candidates 

§ Proof: Let us define probability 𝑝3 of the 𝑖-th candidate be in the first 
segment, and the best one is before the (𝑖 − 1) good ones in the 
second segment.

𝑝" = 𝑝 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .
𝑝 𝑖 − 1 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡].

𝑝 𝑖 − 2 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑖𝑛 𝑓𝑖𝑟𝑠𝑡, 𝑖 − 1 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 … .
𝑝[𝑏𝑒𝑠𝑡 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑖 − 2𝑡ℎ,… , 2𝑛𝑑 𝑏𝑒𝑠𝑡 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠]

= 𝑥 ⋅ $
!"#

$%&

1 − 𝑥 ⋅
𝑛

𝑛 − 𝑗 − 1
−

𝑗
𝑛 − 𝑗 − 1

⋅
1

𝑖 − 1

lim
'→)

𝑝$ = 𝑥. $
!"#

$%&

(1 − 𝑥) ⋅
1

𝑖 − 1

𝑝4566#44 =N
37.

8

𝑝3 =N
37.

8
𝑥
𝑖 1 − 𝑥 3 = −𝑥𝑙𝑛(𝑥)

Maximizes for 𝑥 = !
#

15



ML model for random arrivals

u Predicting the maximum value, 𝑔∗

u λ is the confidence of the predictions
u c describes to lose in the worst case
u exp{𝑊B<(−1/(𝑐𝑒))} and exp{𝑊C(−1/(𝑐𝑒))} are solution to −𝑥𝑙𝑛 𝑥
= <

DE
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ML model for random arrivals

u Theorem, Algorithm is 𝑔D,F 𝜂 − 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑣𝑒 , where 𝑔D,F 𝜂 is:

And 𝑓(𝑐) is:
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ML model for random arrivals

u Theorem, Algorithm is 𝑔D,F 𝜂 − 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑣𝑒 , where 𝑔D,F 𝜂 is:

u Proof: In the worst-case we are always <
DE

-competitive:
§ 𝑝∗ − 𝜆 > 𝑂𝑃𝑇: Never goes to step two, similar to previous proof
§ 𝑝∗ − 𝜆 ≤ 𝑂𝑃𝑇: estimation was not higher than opt, then from the fact 

answer, and any α-approximation for the classical secretary problem 
yields an α-approximation for the value-maximization variant.
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ML model for random arrivals

u Theorem, Algorithm is 𝑔D,F 𝜂 − 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑣𝑒 , where 𝑔D,F 𝜂 is:

u When the error is low, then:
u 𝑝∗ > 𝑂𝑃𝑇: we have 𝑔∗ − 𝜆 < 𝑂𝑃𝑇 , Since 𝑂𝑃𝑇 appears in Phase 

II with probability 𝑓(𝑐), we in particular pick some element in Phase 
II with value at least 𝑂𝑃 𝑇 − 𝜆 with probability 𝑓 𝑐 .

u With probability 𝑓(𝑐)we will pick some element with value at least 
𝑂𝑃 𝑇 − 𝜆 − 𝜂. To see this, note that in the worst case we would 
have g∗ = 𝑂𝑃 𝑇 − 𝜂, and we could select an element with value 
𝑔∗ − 𝜆, which means that the value of the selected item is OP T -
λ - η.
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Thank you J
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