
Internship report - Vienna University

Julien Dallot

01/07/20 to 12/09/20

My internship was 2 months long, from 1st July to 12th September. During
those two months, I used the vast majority of my time trying to solve a theoret-
ical problem called online balanced partitioning (explained in next section). My
supervisors were Maciej Pacut and Stefan Schmid, from the University of Vi-
enna. In this report I present the major results of my internship in chronological
order.

Contents

1 The problem : Online Balanced Partitioning 1

2 Encouraging empirical results (01/07/20 to 06/07/20) 6

3 The global model (06/07/20 to 30/07/20) 9

4 Sub-clusters (30/07/20 to 20/08/20) 11

5 Using Group theory (20/08/20 to 12/09/20) 13

6 Conclusion 18

1 The problem : Online Balanced Partitioning

This problem aims to solve a real world issue encountered in data centers: there
are multiple virtual machines (VMs), that can communicate between one an-
other. A request forces 2 VMs to communicate (a request can simply be seen
as a pair of VMs). Those requests are coming and executed step by step in the
order they arrives. Since the problem is an online version, we basically don’t
know anything about the incoming requests until they finally arrive.

The VMs are all stored in clusters. There is a certain number of identical
cluster (l of them) and each one of them can store exactly k virtual machines.
In this version of the problem, we consider that every cluster is totally fulfilled
at any time (so they are exactly k.l virtual machines in all). Here follows a

1

diagram that describe the situation; in this example, k = 4 and l = 5, the VMs
are in blue, clusters in grey.

But here comes the heart of the problem. Each communication between
two VMs needs a certain cost to be paid, which cost is related to the amount
of additional traffic the communication involves. We obviously want to reduce
that cost to avoid congestion problems. Let A and B be two VMs. Here is the
cost of request (A, B):

� 0 if A and B are in the same cluster

� 1 if they are in different clusters

At last, it is possible at any time to move as many VMs as we want from a clus-
ter to an other. This operation is called a shifting and it costs α ≥ 1 for each
shifted VM. Since there never is a free space in any cluster, moving a virtual
machine means that we must at least move one other VM, which makes the cost
of any shifting more than 2α.

The main objective was to find an algorithm that could orchestrate the VMs
shiftings, while trying to lower the total cost (communication + shifting cost)
and making sure it doesn’t exist a request sequence that could lead to arbi-
trarily bad costs (to avoid potential cyberattacks that might use on purpose
traffic congestion). When I started my internship had Maciej Pacut and Stefan
Schmid already imagined a quite simple algorithm based on empirical obser-
vations about the communications between VMs. More precisely, they noticed
that when two VMs communicate in a data center, it is far more likely that
those two communicate a lot afterwords. In other words, VMs in data centers
tend to only communicate with a restricted number of neighbours; that’s what
inspired them the following algorithm.

Each time a new request arrives:

1 if the two VMs of the request are hosted in the same cluster, then nothing
needs to be done and the VMs just communicate for free

2 else, if the two VMs aren’t hosted in the same cluster, then

2

2.1 if there exists a shifting resulting with the two VMs of the request
being in the same cluster, then compute such a shifting that has
minimum cost and apply it. Until the case 2.2 is not reached, those
two VMs will be ”linked” to each other, meaning that they must
always be hosted in a common cluster

2.2 else, in case there’s no shifting resulting with the two VMs being in
the same cluster without breaking links, then break all links and go
back to step 2

That algorithm trivially forces pairs of VMs which had already communi-
cated with each other, to be hosted in a common cluster. It is to make sure
that any further requests between those pairs, supposedly likely to happen, are
costless. Besides, it is quite clear, once a communication occurred between 2
VMs, that those VMs now behave like a unique entity, as they will always be
shifted together. We call such an entity a component, namely a group of VMs
that must always be hosted in a common cluster. For the same reasons, we also
consider that a request actually gives the order to gather two components, and
not two VMs, since the results is the same. Finally, we define a phase as being
any set of successive steps in the algorithm, where 1st step has no link between
VMs and last step reaches point 2.2 (when it’s no more possible to gather the
two VMs of the incoming request, while respecting component’s constraints).
From now on, we won’t any more talk about VMs, but rather about compo-
nents; here follows a diagram depicting such an instance, with k = 5 and l = 5.
The figure in each component stands for the number of VMs it is composed of.

1

2

1

1

2

3

1

3

1

5

2

1

2

Since every traces of the previous iterations are erased at the beginning of
a new phase, we decided only to consider what’s happening during a phase. So
here is the main question of the whole internship:

let be l clusters and k VMs per cluster, what is the maximum cost
of a phase?

3

At first glance, the shiftings resulting from the arrival of a request seems to
be quite simple and cheap, and that is true at the beginning of a phase, where
all component’s sizes are close to 1 (then it is always sufficient to move only two
VM to fulfil the request). The shiftings can also be really cheap at a more ad-
vanced moment of the phase. For instance, let’s go back to the previous example.

1

2

A

1

2

3

1

B

C

5

2

1

2
Here the components A and B
must be merged, they are colored
in red. In that case there is a re-
ally cheap shifting: just make an
exchange between A and one of
the components of size 1 in the
same cluster as B, for example C.

1

2

C

1

2

3

1

AB

5

2

1

2
Here is the resulting configuration
after the exchange of components
A and C. Components A and B
have merged into a bigger compo-
nent of size 4. So the cost of the
request (A,B) was 2α.

However the cost of a shifting can be far higher than this. Before I began
the internship, Maciej Pacut and Stefan Schmid had found some impressively
costly examples where almost every components were forced to move, even if we
always chose the least expansive shifting. What’s even more surprising is that
the corresponding request only asks for two one-size components to be merged.
This observation already prevent us from making any link between the size of
the components to be merged, and the cost of the involved shifting. Because
of that ability to bring about big shiftings while only asking for tiny moves, we
gave to those shiftings the name cascade. Let p be some positive even integer.
Here follows the most costly example we found so far, with k = 2p + 1 and
l = p/2 + 1.

4

A

p

p

3

p− 1

p− 1

5

p− 2

p− 2

...

p− 1

p
2
+ 1

p
2
+ 1

B

p

p
2

p
2

Here components A and B, each of size
1 and colored in red, must be merged.
Notice that when B moves to the same
cluster as A (ie cluster 1), there is no
simple way to retrieve a valid configura-
tion. For B to be able to come in cluster
1 we need to free up exactly one slot in it,
that’s why we exchange one component
of size p in cluster 1 with a component
of size p − 1 in cluster 2. But then the
max capacity of cluster 2 is exceeded by
1 slot; we need to exchange one of its
components of size p−1 with another of
size p − 2 in cluster 3, etc. This chain
finally ends when we reach the last clus-
ter, where there precisely lacks one slot
since component B moved to cluster 1.

AB

p− 1

p

3

p

p− 2

5

p− 1

p− 3

...

p− 1

p
2
+ 2

p
2

p

p
2
+ 1

p
2

Here is the resulting configuration after
components A and B merged in clus-
ter 1. We colored the components that
moved during the cascade in orange. To
sum things up, we had to move the two
upper components for each cluster (ex-
cept in the first and last clusters where
we only moved one). Since the number
of clusters l is a O(p) and so a O(k),
this cascade has a cost which is in
O(k2).

Given those kind of enormous cascades that move almost every components,
it first seems not so naive any more to think about the following trivial upper
bound. As no component can move two times during one minimum cascade
(otherwise it would not be a minimal one), then an upper bound on a cascade’s
cost trivially is the overall sum of all component’s sizes, namely k · l (from now
on, we consider that α = 1 because it lightens the notations). Then, since every
requests involves a strict increase of one component’s size by at least 1, then

5

there cannot be more than k · l cascades during a phase. Finally, the cost of
any phase cannot exceed (k · l)2. However, the empirical results that we got
during this internship clearly suggest that there exists a far better upper bound
that we suspect to be l · k · log2(k). Before I began the internship had Maciej
Pacut and Stefan Schmid already found a lower bound on the maximum cost of
a phase of O(k · l) (Brief Announcement: Deterministic Lower Bound for Online
Balanced Repartitioning).

2 Encouraging empirical results (01/07/20 to 06/07/20)

During the first week of the internship, Mr Pacut and I decided to have a clearer
and faster way to compute cascades, that’s why I coded a Python script which
automatically computed a valid minimum cascade given a starting configuration
and a request (get the github link here). This problem unfortunately is NP-
Complete, thus we were highly restricted in the size of the problem instances,
otherwise the computing time literally exploded. To lighten computation time,
I used a Linear Programming with Integrity Constraint solver which exploited
branch & bound techniques to run it faster. However it wasn’t that helpful only
to compute valid cascades so we managed to extend the code to whole phases
computation.

Hence I coded a program that simulates entire phases with random requests,
ie from the beginning with one-size components to the final point when the
incoming request cannot be applied. Since this way of proceeding was highly
biased, it was crucial to have a very large number of achieved simulations so that
we potentially have significant results. Therefore we almost entirely focused on
cases where l = 2 (ie when there’s 2 clusters) during the two months since it
spared computation time. To be faster, we had the script running for days and
night, in parallel between my personal computer and the Vienna University’s
data center, whose power made it possible to achieve more than 2 millions trials,
with k varying from 2 to 200. The following graph shows our results:

6

 https://github.com/foo/cascade

0 20 40 60 80 100 120 140 160 180 200

0

500

1,000

1,500

2,000

2,500

3,000

cluster capacity(k)

p
h

a
se

m
ax

co
st

Max cost dependance of cluster capacity, with l = 2

2k log2(k)
empirical max cost

101 102

0

500

1,000

1,500

2,000

2,500

3,000

Same as above with logarithmic scale on the abscisse axis

2k log2(k)
empirical max cost

7

The empirical results the simulation gave us are in blue (I made the constant
α equal 1), whereas the red curve is just a plot of the function f(k) = 2k log2(k).
One can better notice, looking at logarithmic scale plot, how much of a good
approximation 2k log2(k) is. Even better, after millions of trials never had a
phase’s cost exceeded that function, however tight the approximation is. Those
good results gave us new tracks to look into, and we tried for one month and a
half to prove that 2k log2(k) indeed always is an upper bound of a phase’s cost.

However, those observations weren’t sufficient at all to deeply convince us
that this upper bound actually holds and always fit the curve in a tight way. We
can approximately explain the relative separation of the two curves as k grows
by observing, that the higher k is, the numerous phase possibilities are and thus
the worse our empirical max cost estimation is. But they are some huge bias
factors. First, we obviously can reach admissible results only for small instances.
Second, our MILP solver (Mixed Integer Linear Programming) favors without
doubts a certain type of cascades, which narrows our field of investigations (this
last bias actually is not that worrying, as we can integrate the specific kind of
cascade it does in our algorithm so that it keeps the results we find, if we ever
find any).

Even if this upper bound eventually gets exceeded, this at least shows us
that it is worth to seek for a better upper bound than (l.k)2, or at least 4k2 if
we think it’s only true for l = 2. About the other values of l, we’ve done more
than 100.000 trials for l = 3 and k from 2 to 10 and the simulations gave us
enthusiastic results in that the function lk log2(k) still is an upper bound and
a tight approximation. Here follows the results I had with l = 3, even if they
certainly are not significant.

2 4 6 8 10

0

20

40

60

80

100

cluster capacity(k)

p
h

as
e

m
ax

co
st

Max cost dependance of cluster capacity, with l = 3

3k log2(k)
empirical max cost

8

In the remaining parts I will have the pleasure to explain the main tracks
we had think about, to finally overcome this problem.

3 The global model (06/07/20 to 30/07/20)

After some brain storming with Mr Pacut, we decided to focus on that strange
appearance of the logarithm function that our empirical data seems to high-
light. We also decided to completely focus on the l = 2 case for it is simpler to
compute and to figure out. How could a logarithm intervene in such a problem?
The usual way for a logarithm to appear is when we do successive divisions by
2, basically within fusion sort for example (notice that we used a logarithm in
base 2 and that it fits particularly well with our empirical results, hence we
found it worth our time to especially look for divisions by 2).

Meanwhile I’ve had the feeling that the problem we study could be com-
pleted, in the sense that every time we supposed that two components merge,
we had to make sure they are from different clusters; why couldn’t we merge
components whose clusters are the same? To me this appeared like a hole in
our theory, as if you didn’t consider 0 to be a part of the integers. By filling this
hole, you could end up with a more consistent and understandable theoretical
framework. So, what should be the cost of such a merge that take place within
components from the same cluster? Let A and B two components, merging
them has the following cost:

� Cost of a minimum cascade, if A and B are in two different clusters

� 2 ·min{|A|, |B|} if A and B are in the same cluster, with |.| the number
of VMs it is composed of

Here follows an example with l = 2 and k = 6:

1

2

1

2

2

3

1

In this example, the request that just came
concerns the components colored in red. Since
those components are located in the same clus-
ter, then the cost of the merge equals 2 ·
min{2, 3} = 2.

We called it the Global Model since any component can be merged with any
other. To find this cost of 2 ·min{|A|, |B|}, I made a lot of personal trials and I
intuitively ended up thinking, this was the most natural way to do it. Indeed,
the costs this model involves are quite comparable with those of the normal

9

model. Furthermore it intuitively makes sense to pay that cost for intra-cluster
merges; figure out A and B actually are in different cluster, and it is possible
to simply move A in the same cluster as B and vice versa. Then the minimal
cascade would be to move the component with lower size, hence the cost would
indeed be 2 ·min{|A|, |B|}.

Notice that the global model ”contains” the normal model, in a sense that
we can compute a normal phase within a global one. This means that if an
upper bound holds for the global model, then it will hold for the normal one as
well. But what was actually promising with that model, is that it finally gives us
a track to explain the appearance of the logarithm function. First, let’s wonder
what would be the maximum cost of a phase, if we can only merge components
that are in the same cluster. We call this framework the intra-cluster model.
Then, every clusters become isolated from the others and thus we can focus
on only one of them. After some calculation Mr Pacut and I proved that the
asymptotic upper bound of a phase’s cost with only one cluster is k log2(k). This
result comes from the fact that we can maximize the cost by always merging
components of same size (when its not possible, merge components whose sizes
are close). Here is an example for k = 8, components that will be merged are
in the same color.

1

1

1

1

1

1

1

1

1st step
Cost = 8

2

2

2

2

2nd step
Cost = 8

4

4

3rd step
Cost = 8

8

4th step
total = 24

We indeed end up with a cost that exactly is 24 = 8 log2(8). This upper
bound is only reached for the k that are powers of 2, but it is also a good
upper bound for the others. Since the clusters are totally independent during
a phase, then the total maximum cost is obtained by summing the cluster’s
maximum costs. Hence we have the wanted upper bound l ·k · log2(k). But how
to make a direct link between this result and our problem? Here unfortunately
ends this track, because we weren’t able to extend it to the global model, where
merges can also occur in different clusters ... I also coded a script that simulates

10

global phases and I found some counter examples where the upper bound gets
exceeded. Even worse, I found some phase examples in the normal model,
whose costs where greater than his of the intra-cluster model, which definitely
prevented us from finding a link between those two models. We had to find
some other tracks.

4 Sub-clusters (30/07/20 to 20/08/20)

Mr Pacut had the feeling that we might prove our assumptions by using some
induction proof on the number applied requests since the beginning of the phase.
We spent many hours trying to make a proof of it in front of a white board,
and something was still missing. First, the k log2(k) formula didn’t quite fit the
induction reasoning as the heredity part brought pretty complex terms that we
weren’t able to link with anything solid. Second, I intuitively found it highly
unlikely to find anything relevant by doing so, since we only based our induction
on the number of already applied requests.

Indeed, as we have seen it in the first section, they can exist really costly
cascades; that observation could lead us to think that phases can be really costly
as well. The empirical results highlighted though that we can find a better up-
per bound. Thus the successive cascades must be amortizing each other’s cost
during a phase, that is to say, for each costly cascade they are many other cheap
ones. That’s why I introduced a new notion to work with, that deeply took into
account the previous cascades: sub-clusters.

Definition (sub-cluster). In a configuration where l = 2, a sub-
cluster is a subset of components, whose total size on first and second
clusters are the same.

For instance, let’s look at the following configuration:

D(1)

C(1)

B(2)

A(1)

F (2)

E(3)
Here, the size of each component is indicated as an exponent
of its name. The sub-clusters are sets of components that
have the same total size on the left and on the right. For
instance, {A,B,C} is a sub-cluster as its size on the left and
on the right is the same and equals 3.

But how many sub-clusters are they? We can count them using their size.
There is only one sub-cluster of size 0, which is the empty set ∅. There is

11

obviously no sub-cluster of size 1 since the right cluster has no subset of size
one. There are 3 sub-clusters of size 2, here there are colored in purple:

D(1)

C(1)

B(2)

A(1)

F (2)

E(3)

D(1)

C(1)

B(2)

A(1)

F (2)

E(3)

D(1)

C(1)

B(2)

A(1)

F (2)

E(3)

There are as well 3 sub-clusters of size 3:

D(1)

C(1)

B(2)

A(1)

F (2)

E(3)

D(1)

C(1)

B(2)

A(1)

F (2)

E(3)

D(1)

C(1)

B(2)

A(1)

F (2)

E(3)

Finally, there are no sub-clusters of size 4, and only 1 sub-cluster of size
5 which is the set of all components {A,B,C,D,E, F}. So in total there are
1 + 3 + 3 + 1 = 8 sub-clusters in this configuration.

How could the sub-clusters be any helpful? First, we can notice that a cas-
cade namely is a sub-cluster that gets exchanged its left and right parts. There
is a bijection between the two of them, so introducing sub-clusters gives a sim-
ple theoretical framework to work on cascades. But what’s definitely interesting
about sub-clusters, is that their number gives an other indicator to follow the
evolution of the configuration during a phase. At the beginning of any phase,
they are

(
2k
k

)
sub-clusters (one can retrieve this result with an explicit summa-

tion), their number goes down to 2 at the end of a phase, assuming that the
phases we consider still go on until it’s no more possible to merge something.
But what was really promising to me is the following Lemma:

Lemma. In a configuration where l = 2, the number of sub-clusters
remains unchanged after any shifting. As a result, that number only
changes when components get merged; it also strictly decreases during
a phase.

12

Proof. Let C be a configuration during a phase with l = 2 and k an integer.
Let S = (SL, SR) be any sub-cluster in C with SL its left part and SR its right
part, let S′ = (S′L, S

′
R) be the next sub-cluster to be exchanged because a re-

quest just came. We show that after S′ gets swapped, then a new sub-cluster
appears. The following holds:

w(SL) = w(SR)

⇐⇒ w(SL \ S′L) + w(SL ∩ S′L) = w(SR \ S′R) + w(SR ∩ S′R)

⇐⇒ w(SL \ S′L)− w(SR ∩ S′R) = w(SR \ S′R)− w(SL ∩ S′L)

⇐⇒ w(SL \ S′L) + w(S′R)− w(SR ∩ S′R) = w(SR \ S′R) + w(S′L)− w(SL ∩ S′L)

⇐⇒ w(SL \ S′L) + w(S′R \ SR) = w(SR \ S′R) + w(S′L \ SL)

After the swap, SL \ S′L and S′R \ SR are in the left cluster, SR \ S′R and
S′L \ SL are in the right one. The above equations show that their total cost is
equal on each cluster, so {SL \ S′L, S′R \ SR, SR \ S′R, S′L \ SL} indeed is a sub-
cluster. Since we only used equivalence relations, then the described process is
reversible. Finally, at each sub-cluster before the cascade corresponds only one
sub-cluster after the cascade and vice versa. Hence the claim holds.

I spent a lot of time trying to work with those sub-clusters, to use their
properties within a proof. Anyway it didn’t give any relevant results, and it
took me quite a while to figure out, that this property on the number of sub-
cluster is no more than a trivial observation that cannot be sufficient to prove
anything. Here follows that observation: let C be our current configuration and
let C be the set of the configurations we can reach from C. Notice that the
cardinality of C , |C |, equals the number of sub-clusters in C since we can by
definition obtain any element of C by swapping a sub-cluster in C. Let C1 be an
other configuration and S1 a sub-cluster in C that lead to C1. Its quite easy to
see, that we can still reach any configuration of C starting from C1. Indeed let
C2 be an other configuration in C that we can reach from C with the sub-cluster
S2. Then, starting from C2, we just need to apply the inverse swap of S1 to go
back to configuration C, and then apply S2 to reach C2. Since a composition
of cascades still is a cascade, we can reach any element of C from C1 and from
C, meaning that C and C1 have the same number of sub-clusters. Even if this
attempt hadn’t been successful, those cascade compositions and inversion gave
me ideas for the last track I looked into.

5 Using Group theory (20/08/20 to 12/09/20)

For a long time I had the feeling that it was somehow possible to study this
problem under the framework of group theory. The cascades made think about
rubiks cube moves, but without being able to investigate any further. Take the
case where l = 2 to make things easier, let C be your starting configuration.

13

Then try to consider that the sub-clusters you can swap (ie the cascades you
can apply, they’re both the same) describe a group (G, .). The following must
hold:

� The composition law is internal (ie s1, s2 ∈ G =⇒ s1s2 ∈ G)

� There exist a neutral element e ∈ G st ∀s ∈ G, es = se = s

� Any element has an inverse (ie ∀s ∈ G,∃ s−1 ∈ G : ss−1 = e)

Clearly, G is the set of sub-clusters that we can swap on a given configuration.
The composition law is the resulting sub-cluster that we get after swapping two
sub-clusters consecutively. Te neutral element e is the empty sub-cluster and
the inverse of a sub-cluster must be himself, since swapping it twice in a row
bring us back to the same configuration. But there’s something wrong about
all of this. What really is an element of G? It cannot actually be a sub-cluster
as we defined it previously, ie a set of components. If we say an element of G
simply is ”swap components set A with components set B”, then what happens
if we want to apply such an element on a configuration where A has its elements
shared between the two clusters? Well it has no sense any more and G is not a
group.

I tried a lot of things and didn’t manage to find a group to describe the
whole problem even if I had the strong intuition there was a link. Anytime I
thought about new ideas, there was always a single point of the group definition
that didn’t match. An then, after weeks of trials, I had the idea not express the
problem with one group, but rather with many groups at the same time. For
that, let’s define a matching :

Definition (matching). In the special case of two clusters, a match-
ing is a pairwise matching between VMs. In other words, it is a set of
couples of VMs where all the VMs are present.

Let C be the current configuration where all components are of size 1 (at
the beginning of a phase) and M be a matching. We say that M is valid on C
if every couple of M have one element in the left cluster, the other on the right,
which means that swapping those two VMs has a sense. Then we can define a
group GM as follows:

� For any m ∈M , m ∈ GM

� For s1, s2 ∈ GM , s1s2 is ”swap s1, and then swap s2”

Now we can see that GM really is a group. Its neutral element is the empty set
(meaning ”swap nothing”), each element has an inverse which is himself. The
main difference with before is that, within a group GM , a given VM can only be
swapped with its match. Then, on a given configuration C, if it happens that
two matching VMs are hosted in the same cluster, we just say that the group
GM is not valid, meaning that is just cannot be used by now.

14

We have created many groups (k!
2k

in total, the number of different match-
ings); given a configuration C, some of them are valid, the rest are not valid.
But what happens when we actually merge two components A and B? There
are two case. Let M be a matching and GM its associated group. If A and B
were matched in GM , then it means that GM won’t ever be useful any more
since it won’t be possible to swap A and B. We can say that GM is somehow
deleted. Otherwise, if A and B weren’t matched in GM , then we end up with a
subgroup of GM after the merge. Here is an example. In the following diagrams
M1, M2 and M3 are three matchings, two VMs are matched if they are opposite
each other. The to-be-merged components A and B (of size 1) are in red, and
we assume that they will merge after A swapped with with a component C.

2

A

1

2

C

B

Matching M1

1

A

2

2

C

B

Matching M2

2

1

A

2

C

B

Matching M3

Those three matchings all are valid in this configuration, however they are
going to have different reactions toward the merge of A and B. Let’s start with
M1:

2

C

1

2

AB

Matching M1

After the merge, we see that its no longer possible
to swap A and C alone. Hence we lost one degree of
freedom in group GM1

15

C

1

2

2

AB

Matching M2

After the merge, we see that there’s no difference for
group GM2 . Hence the same swaps are possible, no
more no less.

About matching M3 finally, we can see that it’s no longer possible to swap A
and B after the merge. Hence the group GM3

won’t be valid any more during
the rest of the phase.

Now that we described how do the groups evolve as we merge components,
let’s have a closer look to the costs of the swaps. Because GM is an abelian group
for any matching M (meaning its elements are commutative ie s1s2 = s2s1),
then its cardinality |GM | is a power of 2. At the beginning of a phase, the
cardinality of any group obviously is 2k, but afterwords it ends up being 2d

with 1 ≤ d ≤ k (it can never be 0 since there are always at least 2 elements,
the neutral element e and the full element which consists in swapping all the
components). We call d the dimension of the group GM , since we can retrieve
every element of GM by combining only d well chosen elements, kinda like a
basis in a vector space.

Now that we have those notions, let C be the current configuration with
l = 2 (at any time within the phase), and let’s say the next request concerns
two components A and B. Let M a valid matching on C and GM its associated
group, and let HM ⊆ GM defined as follows: ∀s ∈ GM , s ∈ HM ⇐⇒ A ∈ s
and B ∈ s, or neither A nor B are in s. In other words, HM actually contains
the elements that don’t put A and B in the same cluster. It seems like these
precisely are the elements we aren’t interested in, but HM actually plays a vital
role. Indeed, the following holds:

Lemma. Let M be any matching, then HM is a subgroup of GM

and, if HM 6= GM then dim(HM) = dim(GM)− 1.

Proof. To prove that HM is a subgroup of GM , just see that the neutral element
e belongs to HM (e indeed contains neither A nor B). For s1, s2 ∈ HM , then
s1s2 ∈ HM and for s ∈ HM , then s−1 ∈ HM (I’m not proving it here due to
lack of place).

Then let’s take a look at the dimension of HM , and let d be the dimension
of GM . There are 2 cases: if d = 1, then it means that the only 2 possible
swaps are to swap the entire clusters (which contains A and B) or the neutral
element e (which contains neither A nor B). GM and HM contain the same

16

elements, they are equal and HM ’s dimension is d. On the other hand, let’s
assume that d > 1, then we’re going to prove that HM ’s dimension is d−1. Let
s1, s2 ∈ GM \HM , then s1 and s2 contain only A or B. Due to lack of space,
I will take for granted that ∃h ∈ HM st s2 = h.s1. With that said, I prove
that we can reach any element of GM by combining elements of HM with only
one element of GM \ HM . Let s ∈ GM \ HM , let g ∈ GM ; if g ∈ GM \ HM ,
then there exists h ∈ HM st sh = g. Otherwise if g ∈ HM , then no problem.
So, a set containing s and a base of HM totally describes GM : dim(GM) =
dim(HM) + 1 =⇒ dim(HM) = d− 1.

Let (h1, h2, . . . , hd−1) a base ofHM , and s ∈ GM\HM , thenB = (h1, h2, . . . , hd−1, s)
is a base of GM . In other words, we have that GM/HM = {HM , sHM}; we can
fully explore the set of swaps that put A and B in the same cluster by taking
a ”seed” swap s ∈ GM \ HM , and then composing it by the elements of HM .
Then let’s prove an upper bound on the cost of the minimal swap that put A
and B in the same cluster.

Let (h′1, h
′
2, . . . , h

′
d−1) be an orthogonal basis of HM , which means that

∀i, j ∈ {1, . . . , d − 1}, i 6= j =⇒ h′i ∩ h′j = ∅. There exists only one i
such that A,B ∈ h′i, let’s call h′AB that swap. Since, the full swap of size k
belongs to HM , we have that

d−1∑
i=1

|h′i| = k

=⇒ |h′AB | = k −
d−1∑
i=1

i6=AB

|h′i|

=⇒ |h′AB | ≤ k − d+ 2

=⇒ |s ∩ h′AB | ≤ k − d+ 2 and

|h′AB \ (s ∩ h′AB)| ≤ k − d+ 2

Let smin be a minimum swap in the matching M . Then, by choosing the
minimum swap between s ∩ h′AB and h′AB \ (s ∩ h′AB), we get the following
inequality since their intersection equal ∅.:

|smin| ≤
k − d

2
+ 1 (1)

To shorten this inequality, we can now have a look at all the other matchings
and take the ones whose dimension dmax is maximum. Let now smin be an
overall minimum swap, we get:

|smin| ≤
k − dmax

2
+ 1 (2)

17

Despite this approach gave me a better understanding of the problem, I’m
afraid I couldn’t go further than that. If we sum this inequality over an entire
phase, then we hence get an inequality about the total cost of a phase, but I
cannot really figure out how evolves that dimension d over a phase. Moreover, I
actually don’t think the above inequality is tight enough to reach a goof upper
bound; maybe it is possible to get a better one using group theory though.

6 Conclusion

This internship was a step forward in the world of research, and I really enjoyed
it. I discovered what it does to only think about one thing over and over, in
the office, on my way to the office, during the night ... It was passionate to
discover this type of life. I want to thank Stefan Schmid and Maciej Pacut a
lot for their patience, their every day kindness and benevolence towards me; I
especially thank Maciej Pacut for the amazing hours we had in front of that
white board. He gave credits to my ideas, even though I only was a 21-years-old
student, and that represented a big step in developing my self-confidence. After
that internship, I told myself it wasn’t that crazy to become a researcher.

18

	The problem : Online Balanced Partitioning
	Encouraging empirical results (01/07/20 to 06/07/20)
	The global model (06/07/20 to 30/07/20)
	Sub-clusters (30/07/20 to 20/08/20)
	Using Group theory (20/08/20 to 12/09/20)
	Conclusion

